請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35899完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽明(Ming Ouhyoung) | |
| dc.contributor.author | Chien-Chang Ho | en |
| dc.contributor.author | 何建璋 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:47:59Z | - |
| dc.date.available | 2005-09-26 | |
| dc.date.copyright | 2005-07-27 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | [BKZ01] Biermann H., Kristjansson D., Zorin D.: Approximate
boolean operations on free-form solids. In SIGGRAPH ’01: Pro- ceedings of the 28th annual conference on Computer graphics and interactive techniques (2001), pp. 185–194. 1 [Blo88] Bloomenthal J.: Polygonization of implicit surfaces. Computer Aided Geometric Design 5, 4 (1988), 341–355. [BLS04] Banks D. C., Linton S. A., Stockmeyer P. K.: Counting cases in substitope algorithms. IEEE Transactions on Visualization and Computer Graphics 10, 4 (2004), 371–384. 2.1, 2.2 [Che95] Chernyaev E.: Marching Cubes 33: Construction of Topo- logically Correct Isosurfaces. Tech. Rep. CN/95-17, CERN, http://wwwinfo.cern.ch/asdoc/psdir/mc.ps.gz, 1995. 3.2, 4.4 [FCG01] Ferley E., Cani M.-P., Gascuel J.-D.: Resolution adaptive volume sculpting. Graphical Models 63, 6 (2001), 459–478. 1 [FPRJ00] Frisken S. F., Perry R. N., Rockwood A. P., Jones T. R.: Adaptively sampled distance fields: A general representation of shape for computer graphics. In Proceedings of ACM SIGGRAPH (2000), pp. 249–254. 2.2 [GH91] Galyean T. A., Hughes J. F.: Sculpting: an interactive volumet- ric modeling technique. In Proceedings of ACM SIGGRAPH (1991), pp. 267–274. 1 [Gib98] Gibson S. F. F.: Using distance maps for accurate surface represen- tation in sampled volumes. In Proceedings of Symposium on Volume Visualization (1998), pp. 23–30. 3.3 [HLL 04] Ho C.-C., Lu Y.-H., Lin H.-T., Guan S.-H., Cho S.-Y., Liang C.-L., Chen B.-Y., Ouhyoung M.: Feature refinement strat- egy for extended marching cubes. IEEE International Conference on Multimedia and Expo 2004, (CDROM) Section of Virtual Reality and 3D Graphics (August 2004). 1 [HSE99] Heidrich W., Seidel R. W. H.-P., Ertl T.: Real-time ex- ploration of regular volume data by adaptive reconstruction of iso- surfaces. The Visual Computer 15, 2 (1999), 100–111. 3.1 [JLSW02] Ju T., Losasso F., Schaefer S., Warren J.: Dual contouring of hermite data. In Proceedings of ACM SIGGRAPH (2002), pp. 339– 346. 3.3, 4.1, 6.1, 6.3, A.1 [Ju04] Ju T.: Robust repair of polygonal models. ACM TOG 23, 3 (2004), 888–895. [KBSS01] Kobbelt L. P., Botsch M., Schwanecke U., Seidel H.-P.: Feature sensitive surface extraction from volume data. In Proceedings of ACM SIGGRAPH (2001), pp. 57–66. 3.3, 3.3, 4.1, 4.2, 6.1, 6.3, 6.4, 8.3, A.1, A.2.2 [KSE04] Klein T., Stegmaier S., Ertl T.: Hardware-accelerated re- construction of polygonal isosurface representations on unstructured grids. In Proceedings of Pacific Graphics (2004), pp. 186–195. [LB03] Lopes A., Brodlie K.: Improving the robustness and accuracy of the marching cubes algorithm for isosurfacing. IEEE Transactions on Visualization & Computer Graphics 9, 1 (2003), 16–29. 3.2 [LC87] Lorensen W. E., Cline H. E.: Marching cubes: A high res- olution 3d surface construction algorithm. In Proceedings of ACM SIGGRAPH (1987), pp. 163–169. 1, 1, 2.2, 3 [LDS03] Lee H., Desbrun M., Schr¨oder P.: Progressive encoding of complex isosurfaces. ACM TOG 22, 3 (2003), 471–476. A.1 [LLN01] Li F. W. B., Lau R. W. H., Ng F. F. C.: Collaborative dis- tributed virtual sculpting. In Proceedings of Virtual Reality (2001), p. 217. 1 [LLVT03] Lewiner T., Lopes H., Vieira A. W., Tavares G.: Efficient implementation of marching cubes’ cases with topological guarantees. Journal of Graphics Tools 8, 2 (2003), 1–15. 3.2 [Mat94] Matveyev S. V.: Approximation of isosurface in the marching cube: ambiguity problem. In Proceedings of IEEE Visualization (1994), pp. 288–292. [MN98] Matsumoto M., Nishimura T.: Mersenne twister: a 623- dimensionally equidistributed uniform pseudo-random number gen- erator. ACM Transactions on Modeling and Computer Simulation 8, 1 (1998), 3–30. B [Nat94] Natarajan B. K.: On generating topologically consistent isosur- faces from uniform samples. The Visual Computer 11, 1 (1994), 52– 62. 3.2, 4.4 [NH91] Nielson G. M., Hamann B.: The asymptotic decider: resolving the ambiguity in marching cubes. In Proceedings of IEEE Visualiza- tion (1991), pp. 83–91. 3.2, 3.2, 4.4 [Nie03] Nielson G. M.: On marching cubes. IEEE Transactions on Visu- alization & Computer Graphics 9, 3 (2003), 283–297. 3.2 [NT03] Nooruddin F. S., Turk G.: Simplification and repair of polygonal models using volumetric techniques. IEEE Transactions on Visual- ization & Computer Graphics 9, 2 (2003), 191–205. [Pas04] Pascucci V.: Isosurface computation made simple: Hardware ac- celeration, adaptive refinement and tetrahedral stripping. In Joint Eurographics - IEEE TVCG Symposium on Visualization (VisSym) (2004), pp. 293–300. [PF01] Perry R. N., Frisken S. F.: Kizamu: a system for sculpting digital characters. In Profroceedings of ACM SIGGRAPH (2001), pp. 47–56. 1 [PWFO01] Perng K.-L., Wang W.-T., Flanagan M., Ouhyoung M.: A real-time 3d virtual sculpting tool based on modified marching cubes. In Proceedings of International Conference on Artificial Reality and Tele-existence (2001), pp. 64–72. [RB03] Rajon D., Bolch W.: Marching cube algorithm: review and trilinear interpolation adaptation for image-based dosimetric models. Computerized Medical Imaging and Graphics 27, 5 (2003), 411–435. 3.2 [RDG 04] Reck F., Dachsbacher C., Grosso R., Greiner G., Stam- minger M.: Realtime isosurface extraction with graphics hard- ware. In Short Presentations and Interactive Demos Proceedings of 25th Annual Conference of the European Association for Computer Graphics (2004), pp. 33–36. [RK02] Rodehorst M. J., Kimia B. B.: Subvoxel polygonization of discrete implicit surfaces using ENO interpolation. unpublished manuscript, http://www.lems.brown.edu/∼mjr/paper.pdf, 2002. 3.5 [SCK95] Shu R., Chen Z., Kankanhalli M. S.: Adaptive marching cubes. The Visual Computer 11, 4 (1995), 202–217. 3.1 [SFYC96] Shekhar R., Fayyad E., Yagel R., Cornhill J. F.: Octree- based decimation of marching cubes surfaces. In Proc. of IEEE Vi- sualization (1996), pp. 335–342. 3.1 [SKS97] Siddiqi K., Kimia B. B., Shu C.-W.: Geometric shock-capturing ENO schemes for subpixel interpolation, computation and curve evo- lution. Graphical Models and Image Processing 59, 5 (1997), 278–301. 3.5 [SW04] Schaefer S., Warren J.: Dual marching cubes: Primal con- touring of dual grids. In Proceedings of Pacific Graphics (2004), pp. 70–76. 3.5 [TJW03] Tao Ju S. S., Warren J.: Convex contouring of volumetric data. The Visual Computer 19, 7-8 (2003), 513–525. 5.3 [vGW94] van Gelder A., Wilhelms J.: Topological considerations in iso- surface generation. ACM TOG 13, 4 (1994), 337–375. [VKK 03] Varadhan G., Krishnan S., Kim Y. J., Diggavi S., Manocha D.: Efficient max-norm distance computation and reliable voxeliza- tion. In Proceedings of Symposium on Geometry Processing (2003), pp. 116–126. 2.2 [VKKM03] Varadhan G., Krishnan S., Kim Y., Manocha D.: Feature- sensitive subdivision and isosurface reconstruction. In Proceedings of IEEE Visualization (2003), pp. 99– 106. 3.5 [VKSM04] Varadhan G., Krishnan S., Sriram T., Manocha D.: Topol- ogy preserving surface extraction using adaptive subdivision. In Eu- rographics Symposium on Geometry Processing (2004). 3.5 [WG92] Wilhelms J., Gelder A. V.: Octrees for faster isosurface gener- ation. ACM TOG 11, 3 (1992), 201–227. 3.1 [ZG02] Zelinka S., Garland M.: Permission grids: practical, error- bounded simplification. ACM TOG 21, 2 (2002), 207–229. [ZHK04] Zhang N., Hong W., Kaufman A.: Dual contouring with topology-preserving simplification using enhanced cell representation. In Proceedings of the IEEE Visualization (2004), pp. 505–512. 3.5 [ZPKG02] Zwicker M., Pauly M., Knoll O., Gross M.: Pointshop 3d: an interactive system for point-based surface editing. In Proceedings of ACM SIGGRAPH (2002), pp. 322–329. 1 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35899 | - |
| dc.description.abstract | This dissertation presents a new method for surface extraction from
volume data which generates surface adaptively without crack patch- ing, maintains consistent topology, preserves sharp features, and pre- serves the property of inter-cell independency. The presented ap- proach is based on the marching cubes algorithm, a popular method to convert volumetric data to polygonal meshes. The original march- ing cubes algorithm suffers from problems of cracks in adaptive reso- lution, inability to preserve sharp features, and topological inconsis- tency. Most of marching cubes variants only focus on one or some of these problems. Although these techniques could be combined to solve these problems altogether, such a combination might not be straightforward. Moreover, some feature-preserving variants intro- duce an additional problem, inter-cell dependency. The presented method provides a relatively simple and easy-to-implement solution to all these problems by converting 3D marching cubes into 2D cubical marching squares, resolving topology ambiguity with sharp features and eliminating inter-cell dependency by sampling additional sharp features on faces. Comparisons of our algorithm with other marching cubes variants demonstrate the effectiveness of presented method on various applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:47:59Z (GMT). No. of bitstreams: 1 ntu-94-D86526003-1.pdf: 5983305 bytes, checksum: 36273c39297c50d505cf3a94196ec802 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Background 7 2.1 Marching Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Marching Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Related Work 13 3.1 Adaptive resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Sharp features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4 Inter-cell independence . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 Comparison with marching cubes variations . . . . . . . . . . . . 21 4 Preliminary results 23 4.1 Acquisition of samples from polygonal mesh . . . . . . . . . . . . 23 4.2 Adaptive Extended Marching Cubes . . . . . . . . . . . . . . . . 25 4.3 Sampling sharp features on faces . . . . . . . . . . . . . . . . . . 29 4.4 Topology determination . . . . . . . . . . . . . . . . . . . . . . . 31 5 Solving Problems in 2D 39 5.1 Handling Sharp Features . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Handling Topology Correctness . . . . . . . . . . . . . . . . . . . 42 5.3 Adaptive Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 Cubical Marching Squares: Isosurfacing in 3D 51 6.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 Algorithm overview . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3 Segment generation for faces in 2D . . . . . . . . . . . . . . . . . 55 6.4 Surface extraction for cells in 3D . . . . . . . . . . . . . . . . . . 59 7 Sculpting: Boolean Operations 61 7.1 Storing Volume Data . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.2 Boolean Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.3 Rendering Volume Data . . . . . . . . . . . . . . . . . . . . . . . 67 7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8 Results 73 8.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 8.2 CSG and LOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 8.3 Remeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 9 Conclusion and Future Work 79 A Feature Refinement 81 A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 A.2 Feature-Sensitive volumetric sculpting on adaptive isosurface . . . 83 A.2.1 Problems of editing sharp features . . . . . . . . . . . . . . 83 A.2.2 Feature refinement strategy . . . . . . . . . . . . . . . . . 84 A.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 A.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 B Additional simulation results 89 B.1 Single object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 B.2 Multiple objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 C Publications 99 C.1 Journal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 C.2 Conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 References 106 | |
| dc.language.iso | en | |
| dc.subject | 多重解析度 | zh_TW |
| dc.subject | 三維影像 | zh_TW |
| dc.subject | 等位面 | zh_TW |
| dc.subject | 特徵保留 | zh_TW |
| dc.subject | 電腦圖學 | zh_TW |
| dc.subject | multi-resolution | en |
| dc.subject | sharp feature | en |
| dc.subject | isosurface | en |
| dc.subject | volumn rendering | en |
| dc.subject | computer graphics | en |
| dc.title | 可保留特徵與拓僕資訊並支援多重解析度之及時三維等位面擷取技術 | zh_TW |
| dc.title | Cubical Marching Squares: On Adaptively Preserving Consistent Topology and Sharp Features for Realtime Isosurfacing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 莊永裕(Yung-Yu Chuang) | |
| dc.contributor.oralexamcommittee | 洪一平(Hao-Hua Chu),傅楸善(Chiou-Shann Fuh),朱浩華(Hao-Hua Chu),李同益(Tong-Yee Lee),張鈞法(Chun-Fa Chang),莊榮宏(Jung Hong Chuang),梁容輝(Rung-Huei Liang) | |
| dc.subject.keyword | 電腦圖學,三維影像,等位面,多重解析度,特徵保留, | zh_TW |
| dc.subject.keyword | computer graphics,volumn rendering,isosurface,multi-resolution,sharp feature, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 5.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
