請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35887
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳志宏 | |
dc.contributor.author | Chi-Hong Wang | en |
dc.contributor.author | 王志弘 | zh_TW |
dc.date.accessioned | 2021-06-13T07:47:52Z | - |
dc.date.available | 2005-08-01 | |
dc.date.copyright | 2005-08-01 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-26 | |
dc.identifier.citation | (1) Boxton RB. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques. Cambridge University Press. 2002. Cambridge UK.
(2) Ogawa S, Lee TM, Nayak AS et. al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain and image simulation. Magn Reson Med 1990;14(1):68-78. (3) Kwong KK, Belliveau JW, Chesler DA, et. al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992;89:5675-5679. (4) Ogawa S, Tank DW, Menon R, et. al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 1992;89:5951–5955. (5) Bandettini PA, Wong EC, Hinks RS, et. al. Time course EPI of human brain function during task activation. Magn Reson Med 1992;25:390–397. (6) Logothetis NK, Pauls J, Augath M, et. al. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001;412:150-157 (7) Buxton RB, Uludag K, Dubowitz DJ, et. al. Modeling the hemodynamic response to brain activation. NeuroImage 2004;23:S220-S233 (8) Boynton GM, Engel SA, Glover GH, et. al. Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1. J Neurosci 1996, 16(13):4207–4221. (9) Heeger DJ, Ress D. What dose fMRI tell us about neuronal activity. Nat Rev Neurosci 2002;3:142-151. (10) Miezin FM, Maccotta l, Ollinger JM, et. al. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage 2000;11:735-759 (11) Friston KJ, Fletcher P, Joseph O, et. al. Event-related fMRI: Characterising differential responses. NeuroImage 1998;7:30-40. (12) Handwerker DA, Ollinger JM, D’Esposito M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage 2004;21:1639–1651. (13) From the SPM/FIL website. http://www.fil.ion.ucl.ac.uk/spm (14) Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 2000;44:162–167. (15) Chuang KH, Chen JH. IMPACT: Image-Based Physiological Artifacts Estimation and Correction Technique for Functional MRI. Magn Reson Med 2001;46:344-353 (16) Biswal BB, Yetkin FZ, Haughton VM Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537-541. (17) Menon RS, Luknowsky DC, Gati JS. Mental chronometry using latency-resolved functional MRI. Proc Natl Acad Sci USA 1998;85:10902-10907. (18) Weilke F, Spiegel S, Boecker H, et.al. Time-Resolved fMRI of Activation Patterns in M1 and SMA During Complex Voluntary Movement. J Neurophysiol 2001;8:1858~1863 (19) Yang Y, Engelien W, Pan H, et. al. A CBF-Based Event-Related Brain activation Paradigm: Characterization of Impulse–Response Function and Comparison to BOLD. NeuroImage 2000;12:287–297 (20) Liu HL, Pu Y, Nickerson LD, et. al. Comparison of the temporal response in perfusion and BOLD-based event-related functional MRI. Magn Reson Med 2000;43:768-772 (21) Percival DB, Walden AT. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge University Press, 1993. (22) Thomson DJ. Spectrum estimation and harmonic analysis. Proceedings of the IEEE 1982;70:1055-1096. (23) Welch PD. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms. IEEE Trans. Audio Electroacoustics, 1967;(AU-15):70-73. (24) Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS. Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 1993;30:161-173 (25) Sereno MI, Dale AM, Reppas JB, et. al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 1995;268:889-893 (26) Muller K, Lohmann G, Bosch V, et. al. On multivariate spectral analysis of fMRI time series. NeuroImage 2001;14:347-356 (27) Sun ST, Miller LM, D’Esposito M. Measuring interregional functional connectivity using coherence and partial coherence analysis of fMRI data. NeuroImage 2004;21:647-658 (28) Friston KJ. Experimental design and statistical parametric mapping. Chapter 31 in “Human Brain function”, Academic press, 2004. (29) Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995;34:293-301 (30) Lu H, Golay X, Pekar JJ, et. al. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 2003;50:263-274 (31) Liu HL, Feng CM, Li J, et. al. Disparity of activity onset in sensory cortex from simultaneous auditory and visual stimulation: difference between perfusion and blood oxygenation level-dependent functional magnetic resonance imaging. J Magn Reson Imaging 2005;21:111-117 (32) Rombouts SA, Goekoop R, Stam CJ, et al. Delayed rather than decreased BOLD response as a marker for early Alzheimer’s disease. NeuroImage 2005;26:1078-1085 (33) Saad ZS, Ropella KM, Cox RW, et. al. Analysis and use of fMRI response delays. Hum Brain Mapp 2001;13:74-93 (34) Henson RN, Price CJ, Rugg MD, et. al. Detecting Latency Differences in Event-Related BOLD Responses: Application to Words versus Nonwords and Initial versus Repeated Face Presentations. NeuroImage 2002;15: 83–97 (35) Liao CH, Worsley KJ, Poline JB, et. al. Estimating the Delay of the fMRI Response. NeuroImage 2002;16: 593–606 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35887 | - |
dc.description.abstract | 功能性磁振造影是一項非侵襲性探察大腦功能的技術。最近的十多年來,被廣泛的運用在測定大腦於特定認知、感覺、或運動作業中所活化的區域。由於這些作業所誘發的血流反應相當緩慢,因此在傳統的功能性磁振造影實驗中較少探討時序方面的資訊。然而經過適當的實驗設計與分析,功能性磁振造影還是可以顯示在作業當中,各活化區域訊號發生的時間順序,這可以反映出這些區域神經活化的時間順序。然而目前所常為人使用的方法,有些需要使用相當快速的取樣速率,如此會減少掃描的截面數;或是需要假設特定的反應模型,不同的模型,可能會導致不同的結果。這些皆會降低探討功能性磁振造影中時間順序的實用性。
本論文是運用同調分析法,於頻域中分析功能性磁振造影中各體素的訊號變化,如此可以偵測出於規律刺激下大腦的活化區域。利用所計算出的相角差,我們可以推算出血流反應的延遲。我們運用的具有相角差的身體感覺刺激實驗,結果顯示出︰同調分析可以偵測出具有不同相角的活化區域來,反觀基於時域的相關係數分析法,對於一些血流反應較緩慢的區域有時會偵測不到。不同刺激間的相角差可以反應在其所對應大腦區域訊號的相角差上,我們可以使用同調分析所獲得這些資料,經過轉換可以反映出其間的時間差,且同調分析所求得的相角差和實驗刺激的相角差具有高度相關性。我們接著使用事件誘發的實驗方式,來得到完整刺激所誘發的血流動力反應函式,再將反應相對於刺激的相角差轉換成彼此的時間差,表示在刺激所誘發的血流動力反應區線圖上,結果顯示這時間差接近於血流反應到達頂點的時間。對於所有有反應的體素做回歸分析,結果顯示相角差和到達頂點的時間具有高度相關性。接著要測試同調分析求得的相角差與到達頂點的時間對於取樣頻率的穩定性,我們將一長序列快速取得的功能性磁振造影信號減少取樣來模擬慢速取樣的結果,結果顯示在較慢的取樣頻率下,同調分析的相角和原本的相角值相關係數較大,誤差較小。 同調分析是偵測規律刺激中大腦活化區域的有力工具,它可以不受不同區域間血流反應延遲的影響來找出活化區域。同時,也可測定血流反應延遲時間,相角差和血流動力反應函式到達頂點的時間有密切相關,而且相角差的估計相當穩定,較不受取樣頻率快慢的影響。在未來,同調分析方法可運在腦血流訊號上,尋求較接近神經活化的時序,並將可運用於臨床,尋找疾病相關的血流反應改變。 | zh_TW |
dc.description.abstract | Functional MRI (fMRI) is a noninvasive technique to study brain function. During the recent decade, it is used widely to determine the spatial layout of brain activation associated with the specified cognitive or sensorimotor tasks. Temporal information in fMRI is less concerned in conventional fMRI analysis because of the sluggish nature of the hemodynamic response. However, with proper experimental design and detail analysis, fMRI can provide the temporal sequence of cortical activation across brain regions during tasks, reflecting the sequence of the individual localized neural events. Present methods to obtain the temporal information in fMRI rely on either rapid sampling rate or assume a specified model. However, with rapid sampling the slice coverage would be reduced. With the specified model, there will be model dependent limitations. All these factors will impair the practicability of the method.
In our study, we used coherence analysis to analyze the fMRI voxel time series in frequency domain. It can detect activated areas under rhythmic stimuli. The calculated phase lag can used to estimate the hemodynamic delay. With the devised somatosensory experiments with phase lags in the stimulations, we at first showed the ability of coherence analysis to detect the regions with different hemodynamic delays; in contrast, conventional correlation coefficient method based on temporal domain characteristics might fail to detect areas with large hemodynamic delay. We also demonstrated that the phase lags between different stimuli could be retrieved from the phase lags in the fMRI signals at the corresponding brain regions. We later adopted the event-related paradigm to derive the evoked hemodynamic response function. We then plotted the time delay calculated from the phase lag of the signal from the stimulus paradigm on the fitted curve, which was located near the peak of the curve. We correlated the phase lag with fitted HRF and found good correlation between phase lag from coherence analysis and the time-to-peak in the HRF. To test the consistency and stability of the estimation of the phase and time-to-peak upon different sampling rates, we downsampled a long series of functional activation data acquired at higher rate to simulate the effect of lower sampling rate. The results showed that the phase estimates had higher correlation and lower error in comparison to the original data. In summary, coherence analysis is a powerful method that can be used to detect activated brain region under rhythmic stimulation irrespective of the hemodynamic delay. And it can also estimate the HRF delay in fMRI at the same time. The phase correlates closely with the time-to-peak in fitted HRF, but is less susceptible to the effect of lower sampling rate. In the future, we would like to apply coherence analysis on perfusion-based fMRI contrast to derive more accurate estimate of neuronal activation sequence. We also employ coherence analysis on clinical data in order to estimate possible disease-related alternation in BOLD response temporal dynamics. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:47:52Z (GMT). No. of bitstreams: 1 ntu-94-R92921050-1.pdf: 2204478 bytes, checksum: cdd1dabe9420e0473cb73307b7b1a1b6 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Contents v 1. Introduction 1 1.1 Motivation 1 1.2 Background 2 1.2.1 Mechanism and physiology of BOLD fMRI 2 1.2.2 Hemodynamic response 5 1.2.3 Contemporary analysis methods in fMRI 9 1.3 Temporal information in fMRI 13 1.4 Organization 15 2. Coherence analysis in fMRI 17 2.1 Theories about coherence analysis 17 2.1.1 Coherence and phase 17 2.1.2 Spectral Estimation 18 2.1.3 Multitaper spectral estimation 22 2.1.4 Statistical properties of coherence and phase 25 2.2 Simulations for the phase estimate 26 2.3 Previous fMRI studies using spectral analysis 28 3. Methods 32 3.1 Simultaneous sensory stimulation with phase lags 32 3.1.1 Hemivisual field stimulation 32 3.1.2 Auditory and visual stimulation 34 3.2 Preprocessing of fMRI data 35 3.3 Statistic analysis of fMRI data 36 3.4 Validation of calculated phase with fitted hemodynamic response 37 3.5 The effect of sampling rate on the consistence of the estimate 38 4. Results 39 4.1 Experiments with phase lags 39 4.1.1 Hemivisual field stimulation 39 4.1.2 Auditory and visual stimulation with phase lags 45 4.2 Phase and the hemodynamic response 49 4.3 Effects of downsampling 53 5. Discussion 58 5.1 Interpretation of the results from coherence analysis 58 5.1.1 Coherence as a method to detect the active brain region 58 5.1.2 Phase lag as an estimator for hemodynamic time-to-peak 59 5.1.3 Advantages and disadvantages of coherence analysis 62 5.2 Experimental consideration 63 5.2.1 Choices of stimulus 63 5.2.2 Monitoring subjects’ attention 65 5.3 Optimization consideration 65 5.3.1 The effect of preprocessing: 65 5.3.2 Parameters setting in spectral analysis 66 5.3.3 Hemodynamic models 69 6. Conclusions 71 6.1 Using coherence analysis in fMRI 71 6.2 Temporal information in fMRI 71 6.3 Future works and applications 72 6.3.1 Other fMRI contrasts 72 6.3.2 Clinical applications of fMRI 73 Appendix 75 A.1 Other proposed methods for estimating the hemodynamic delay in fMRI 75 A.2 Statistical properties of coherence and phase 77 References: 82 | |
dc.language.iso | en | |
dc.title | 以同調分析探討功能性磁振造影血流反應之時序:理論與驗證 | zh_TW |
dc.title | Estimating the Hemodynamic Response Timing in Functional MRI Using Coherence Analysis: Theory and Validation | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉鶴齡,陳中明,蘇振隆,劉長遠,許昕 | |
dc.subject.keyword | 功能性磁振造影,BOLD,同調分析,相角差,血流動力反應函式, | zh_TW |
dc.subject.keyword | fMRI,BOLD,coherence,phase lag,hemodynamic response function, | en |
dc.relation.page | 84 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-26 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 2.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。