Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35879
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺
dc.contributor.authorChen-Wei Weien
dc.contributor.author魏振瑋zh_TW
dc.date.accessioned2021-06-13T07:47:47Z-
dc.date.available2005-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-26
dc.identifier.citation[1] V. E. Gusev, and A. A. Karabutov, “Laser optoacoustics,” American Institude of Physics, New York, 1992.
[2] Joel J. Niederhauser, “Comparison of laser-induced and classical ultrasound,” Proc. of SPIE, vol. 4960, 2003, pp.118-123.
[3] Danold C. O’Shea, “Tissue optics”, SPIE-The International Society for Optical Engineering, 2000, pp. 75-77.
[4] R. O. Esenaliev, A. A. Karabutov, and A. A Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no.4 July 1999.
[5] Alexander A. Karabutov, “Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer,” Journal of Applied Physics, vol. 87, no. 4, Feb 2000.
[6] Lihong V. Wang, ”Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nature Bio., vol. 21, no.7, July 2003, pp. 803-806.
[7] Robert A. Kruger, Keith Stantz, and William L. Kiser, “Thermoacoustic CT of the breast,” Proc. of SPIE, vol. 4682, pp. 521-525.
[8] John A. Viator, Lars O. Svaasand, Guillermo Aguilar, Bernard Choi, and J.Stuart Nelson, “Photoacoustic measurement of epidermal melanin,” Proc. of SPIE, vol. 4960, 2003, pp.14-20.
[9] Rinat O. Esenaliev, Irina V. Larina, Kirill V. Larin, Donald J. Deyo, Massoud Motamedi, and Donald S. Prough, “Optoacoustic technique for on invasive monitoring of blood oxygenation: a feasibility study,” Applied Optics, vol. 41, no. 22, Aug 2002, pp. 4722-4731.
[10] Xueding Wang, Geng Ku, Malgorzata A. Wegiel, Darryl J. Bornhop, George Stoica, and Lihong V. Wang, “Noninvasive photoacoustic angiography of animal brain in vivo with near-infrared light and an optical contrast agent,” Optics Letters, vol. 29, no. 7, 2004, pp. 730-732.
[11] M. A. Hayat, “Colloid Gold: Principles, Methods and Applications”, Academic Press: New York, 1989.
[12] Kreuter, J. “In Microcapsules and Nanoparticles in Medicine and Pharmacy” Donbrow, M., Ed.; CRC: Boca Raton, 1992.
[13] A. P. Alivisatos, X. Peng, T. E. Wilson, K. P. Johnsson, C. J. Loweth, Jr. M. P. Bruchez, and P. G. Schultz, “ Organization of Nanocrystal Molecules using DNA,” Nature, vol. 382, 1996, pp. 609-611.
[14] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based Method for Rationally Assembling Nanoparticles into Macroscopic Materials,” Nature, vol. 382, 1996, pp. 607-609.
[15] T. A. Taton, G. Lu, and C. A. Mirkin, “Two-Color Labeling of Oligonucleotide Arrays via Size-Selective Scattering of Nanoparticles Probe,” J. Am. Chem. Soc., vol. 123, 2001, pp. 5164-5165.
[16] T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA Array Detection with Nanoparticle Probes,” Science, vol. 289, 2000, pp. 1757-1760.
[17] A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, “Self-assembly of Nanoparticle into Structured Spherical and Network Aggergates,” Nature, vol. 404, 2000, pp. 746-748.
[18] A. K. Boal, and V. M. Rotello, “Fabrication and Self-Optimization of Multivalent Receptors on Nanoparticle Scaffolds,” J. Am. Chem. Soc., vol. 122, 2000, pp. 734-735.
[19] C.-C. Lin, Y.-C. Yeh, C.-Y. Yang, C.-L. Chen, G.-F. Chen, C.-C. Chen, and Y.-C. Wu, “Selective Binding of Mannose-Encapsulated Gold Nanoparticles to Type 1 Pili in Escherichia Coli,” J. Am. Chem. Soc., vol. 124, 2002, pp. 3508-3509.
[20] Stephon Link, “Spectral properties and relaxation dynamics for surface plasmon electronic oscillations in gold and silver nanodots and nanorots,” J. Phys. Chem. B, vol. 103, 1999, pp. 8410-8426.
[21] S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir, vol. 15, 1999, pp. 701-709.
[22] P. C. Li, C. K. Yeh, and S. W. Wang, “Time-Intensity Based Volumetric Flow Measurements: An In Vitro Study,” Ultrasound Med. Biol., vol. 28, 2002, pp. 349-358.
[23] P. Ugolini, A. Delouche, A. Herment, and B. Diebold, “In Vitro Flow Quantification with Contrast Power Doppler Imaging”, Ultrasound Med. Biol., vol. 26, 2000, pp. 113-120.
[24] C. K. Yeh, S. W. Wang, and P. C. Li, “Feasibility Study on the Time-Intensity Based Blood Flow Measurements using Deconvolution,” Ultrason. Imaging, vol. 23, 2001, pp. 90-105.
[25] V. Mor Avi, S. Akselrod, D. David, L. Keselbrener, and Y. Bitton, “Myocardial Transit Time of the Echocardiographic Contrast Media,” Ultrasound Med. Biol., vol. 19, 1993, pp. 635-648.
[26] P. A. Heidenreich, J. G. Wiencek, and J. G. Zaroff, “In Vitro Calculation of Flow by Use of Contrast Ultrasonography,” J. Am. Soc. Echocardiogr., vol. 6, 1993, pp. 51-61.
[27] X. Chen, K. Q. Schwarz, D. Phillips, S. D. Steinmetz, and R. Schlief, “A Mathematical Model for the Assessment of Hemodynamic Parameters Using Quantitative Contrast Echocardiography,” IEEE Trans. Biomed. Eng., vol. 45, 1998, pp. 754-765.
[28] K. Wei, A.R. Jayaweera, S. Firoozan, A . Linka, D. M. Skyba, and S. Kaul, “Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion,” Circulation, vol. 97, no. 5, 1998, pp. 473-483.
[29] A. A. Karabutov and V. E. Gusev, “Laser Opto-acoustics,” New York: AIP 1993.
[30] G. J. Diebold and T. Sun, “Properties of optoacoustic waves in one, two, and three dimensions,” Acustica, vol. 80, 1994, pp. 339–351.
[31] R. O. Esenaliev, A. A. Karabutov, F. K. Tittel, B. D. Fornage, S. L. Thomsen, C. Stelling, and A. A. Oraevsky, “Laser optoacoustic imaging for breast cancer diagnostics: Limit of detection and comparison with X-ray and ultrasound imaging,” Proc. of SPIE, vol. 2979, 1997, pp. 71–82.
[32] C. K. Liao and P. C. Li, “Reconstruction of optical energy deposition for backward optoacoustic imaging”, submitted to Optical and Quantum Electronics.
[33] Stefan Link and Mostafa A. El-sated, ”Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int . Reviews in Physical Chemistry, vol. 19, no. 3, 2000, pp. 409-453.
[34] Mohammad A. Eghtedari, John A. Copland, Vsevolod L. Popov, Nicolas A. Kotov, Massoud Motamedi, and Alexander A. Oraevsky, “Bioconjugated gold nanoparticles as a contrast agent for optoacoustic detection of small tumors,” Proc. of SPIE, vol. 4960, 2003, pp 76-85.
[35] P. C. Li, and M. J. Yang, “Contrast-specific ultrasonic flow measurements based on both input and output time intensities,” Ultrasound Med Biol., vol. 29, No. 5, 2003, pp. 671-678.
[36] C. W. Sheppard, Basic Principles of the tracer method. New York: Wiley, 1962.
[37] ANSI, Safe Use of Lasers, no. Z136.1(1993), American National Standards Institute, New York, USA, 1993.
[38] Neeman M, Provenzale LM, and Dewhirst MW, “Magnetic resonance imaging applications in the evaluation of tumor angiogenesis,” Semin. Radiat. Oncol., vol. 11, no. 1, 2001, pp. 70-82.
[39] C. K. Yeh, D. E. Kruse, M. C. Lim, D.E. Redline, and K.W. Ferrara, “A new high frequency destruction/reperfusion system,” IEEE Ultrasonics Symposium, Hawaii, 2003.
[40] Robert A. Kruger, “Thermoacoustic Optical Molecular Imaging of Small Animals,” Molecular Imaging, vol. 2, no. 2, 2003, pp. 113-123.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35879-
dc.description.abstract在本研究中,金奈米粒子被應用在分子光聲影像領域。光聲影像是一新進發展之影像技術,它結合了光學影像之高對比解析度及超音波影像之高空間解析度等優點。雖然有這些優點,光聲影像之應用到目前為止仍以組織型態之影像為主。我們的目的在於結合光聲成像技術以及奈米科技,建立出一套非侵入式、可觀測生物功能性影像的系統。在本論文之研究中,首先以Nd-YAG雷射波長532 nm之光束作為照射光源,中心頻率3.5 MHz之超音波探頭為聲波接收器,基於稀釋原理,以直徑40 nm之金奈米球做為光聲影像對比劑,進行定量流速估測,流量大小包括3 ml/sec、2.14 ml/sec、1.2 ml/sec、0.61 ml/sec、0.45 ml/sec、0.33 ml/sec以及0.23 ml/sec,以30毫升之空心球體當作待測系統,進行wash-out時間-強度曲線的量測;另一部分以Nd-YAG雷射1064 nm之光束為照射光源,中心頻率1 MHz之超音波探頭接收,以光吸收峰值為1018 nm之奈米桿為光聲對比劑,基於對比劑破壞-補充模型,進行wash-in時間-強度曲線量測,流速大小包括0.283 cm/sec、0.142 cm/sec、0.071 cm/sec、0.035 cm/sec以及0.018 cm/sec。比較各流速下時間-強度曲線中與流速相關參數與理論值的差異,在wash-out方式中,對比劑平均通過時間與理論值所計算之相關係數皆高達0.97以上;在wash-in方式中,計算所得流速與實際之流速之相關係數皆在0.96以上。在實際的應用,wash-out以及wash-in時間-強度曲線分別可以適用於不同的情況,但兩者的結果皆顯示了以時間-強度曲線法相對性流速量測之能力。在wash-out分析部份,空心球體的體積大小與輸入為瞬間注射的假設皆影響了此方法的實際應用,wash-in方法能夠改善以上的問題。此外,金奈米粒子濃度與光聲訊號強度之線性度,金奈米粒子對於光照射特性的差異,都影響了使用本方法在流速測量上的準確性。在未來工作上,將進行in vitro以及in vivo的實驗,靈敏度的提升以及生物相容性的驗證將是工作的重點。zh_TW
dc.description.abstractIn this research, photoacoustic imaging techniques using gold nanoparticles are investigated. Photoacoustic imaging is a newly developed imaging technique. It combines the high contrast resolution of optical imaging and high spatial resolution of ultrasound imaging. However, the applications of photoacoustic imaging to date focus mainly on morphological imaging. Thus, constructing a non-invasive, blood flow related functional imaging system is the goal of this research. In the first part of this study, at first a pulsed Nd-YAG laser of a wavelength at 532 nm is used for laser irradiation and an ultrasound transducer of center frequency 3.5 MHz is used for acoustic detection (wash-out analyses). Based on the indicator-dilution theory, 40 nm gold nanospheres are used as the contrast agent for photoacoustic imaging. The actual flow rates are 3 ml/sec, 2.14 ml/sec, 1.2 ml/sec, 0.61 ml/sec, 0.45 ml/sec, 0.33 ml/sec, and 0.23 ml/sec. The mixing chamber of 30 ml is used. The wash-out time-intensity curve (TIC) is obtained to estimate the flow rate. In the second part of this study, a pulsed Nd-YAG laser of wavelength 1064 nm is used for laser irradiation and an ultrasound transducer of center frequency 1 MHz is used for acoustic detection (wash-in analyses). Based on the destruction-replenishment model, gold nanorods of absorption peak at 1018 nm are used as the contrast agent. The wash-in TIC is obtained to estimate the flow rate. The actual flow rates are 0.283 cm/sec, 0.142 cm/sec, 0.071 cm/sec, 0.035 cm/sec and 0.018 cm/sec. The flow parameters derived from the TIC among different flows rate are compared. The correlation coefficients between the mean transmit time derived from the wash-out TIC and the theoretical values are above 0.97. And the correlation coefficients between flow rates calculated from the wash-in TIC and the real flow rates are all above 0.96. Although wash-out TIC and wash-in TIC methods can be used in different applications, the results show that the wash-out TIC method is affected by the effective volume of the mixing chamber and the assumption of bolus injection. In practical applications, these issues can be resolved by the wash-in TIC method. The linearity between the concentration and signal amplitude of gold nanoparticles and the properties of gold nanoparticles under the laser radiation are also discussed for their effects on flow rate measurements. Future works will focus on improving the sensitivity for in vitro and in vivo applications. In addition, the biocompatibility tests of gold nanoparticles will be performed.en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:47:47Z (GMT). No. of bitstreams: 1
ntu-94-R92921043-1.pdf: 1178110 bytes, checksum: b783bf98d85e9b16f2a4e9e801d02c34 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents第一章
緒論......................................................1
1.1 光聲成像原理簡介……… ……………………………………...1
1.1.1 光聲影像原理…………… ……………………………….....1
1.1.2 光聲成像目前之相關研究領域………………………………..3
1.2 光聲對比劑:金奈米粒子…………………………………………4
1.3 以對比劑輔助之血流量測…………………………………………5
1.4 指示劑-稀釋定理………………………………………………...7
1.5 破壞-補充模式…………………………………………………...9
1.6 研究動機………………………………………………………...11
1.7 論文架構…………………………………………………….....12
第二章
光聲原理與光聲對比劑.....................................13
2.1 光聲原理成像…………………………………………………….13
2.1.1 forward mode………………………………………………….15
2.1.2 backward mode…………………………………………………17
2.1.3 tomography mode………………………………………………17
2.2 光聲對比劑……………………………………………………….19
2.2.1 包覆染劑之微脂體 …………………………………………..19
2.2.2 與聚乙烯化二醇結合之染劑………………………………….19
2.2.3 金奈米粒子…………………………………………………….20
2.2.4 金奈米桿型變…………………………………………….....23
2.2.5 金奈米粒子在影像標定上之應用……………………………28
第三章
理論基礎……………………………………………………30
3.1 指示劑-稀釋定理…………………………………………………30
3.2 稀釋定理於實際應用上的限制………………………………….34
3.3 以雙能量雷射光之破壞-補充模型………………………………35
3.4 以單能量雷射光之破壞-補充模型………………………………38
3.5 Curve-fitting……………………………………………………40
第四章
實驗架構……………………………………………………………...41
4.1 Wash-out時間-強度曲線量測……………………………………41
4.2 使對比劑破壞之雷射能量臨界值決定………………………….43
4.3 wash-in時間-強度曲線實驗系統架設………………………….45
第五章
結果與分析…………………………………………………………...46
5.1 wash-out時間-強度曲線結果……………………………………46
5.1.1 MTT與 計算結果……………………………………………...46
5.1.2 不同體積之空心球體………………………………………….48
5.2 對比劑破壞之雷射能量臨界值……………..………………….49
5.3 雙能量wash-in時間-強度曲線結果………………………….…51
5.4 單能量wash-in時間-強度曲線結果…………………………….53
第六章
討論與結論…………………………………………………………...55
6.1 稀釋定理的可適用性…………………………………………….55
6.1.1輸入端為瞬間注射的假設……………………………………..55
6.1.2有效擴散體積………………………………………….……….56
6.2 破壞-補充模型中觀測波束寬度對流速估測之影響……………58
6.3 對比劑濃度與訊號強度之線性度……………………………….60
6.4 雷射光能量之安全規範………………………………………….61
6.5 使金奈米桿型變之雷射能量…………………………………….62
6.6 金奈米粒子特性之探討………………………………………….63
6.6.1 生物相容性…………………………………………………….63
6.6.2 奈米金奈子最低濃度之要求………………………………….63
6.6.3 樣本差異所造成之影響……………………………………….64
6.7 與其他影像系統之比較………………………………………….65
6.8 結論……………………………………………………………….66
6.9 未來工作………………………………………………………….67
6.9.1 以時間-強度法量測血液流速之應用………………………..67
6.9.2 金奈米粒子靈敏度的改進…………………………………….69
參考文獻………………………………………………………………71
dc.language.isozh-TW
dc.subject稀釋定理zh_TW
dc.subject金奈米粒子zh_TW
dc.subject光聲影像zh_TW
dc.subject時間-強度曲線zh_TW
dc.subject破壞-補充模型zh_TW
dc.subject功能性影像zh_TW
dc.subject對比劑zh_TW
dc.subjectindicator-dilution theoryen
dc.subjecttime-intensity curveen
dc.subjectdestruction-replenishment modelen
dc.subjectgold nanoparticlesen
dc.subjectphoto-acoustic imagingen
dc.subjectfunctional imagingen
dc.subjectcontrast agenten
dc.title使用金奈米粒子之光聲定量流速估測方法zh_TW
dc.titlePhotoacoustic Quantitative Flow Estimation Using Gold Nanoparticlesen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳家俊,江惠華,彭慶安,王士豪
dc.subject.keyword金奈米粒子,光聲影像,功能性影像,對比劑,稀釋定理,破壞-補充模型,時間-強度曲線,zh_TW
dc.subject.keywordgold nanoparticles,photo-acoustic imaging,functional imaging,contrast agent,indicator-dilution theory,destruction-replenishment model,time-intensity curve,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2005-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved