請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35816完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
| dc.contributor.author | Ming-Chi Su | en |
| dc.contributor.author | 蘇明啟 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:11:42Z | - |
| dc.date.available | 2005-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | [1] J. Prikulis, Optical Imaging and Spectroscopy of Metal Nanostructures, Chalmers/Goteborg University, Sweden, 2003.
[2] B. E. Sernelius, Surface Modes in Physics. Wiley, 2001. [3] J. Homola, S. S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review, Sensors and Actuators B. 54 (1999) 3-15 [4] R. M. Emmons, D. G.. Hall, Buried-oxide silicon-on-insulator structures. II. Waveguide grating couplers, Quantum Electronics, IEEE. 28 (1992) 164–175 [5] R.G. Hunsperger, Integrated Optics: Theory and Technology, 3rd Edition, [6] R. Petit, Electromagnetic Theory of Gratings, Springer-Verlag, New York, 1980 [7] J.B.Swan, A. Otto, H. Fellenzer, Phys. Sat. Sol. 23, 1967 [8] E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons excited by light, Z. Naturforsch. 23A (1968) 2135-2136 [9] A. Otto, Excitation of surface plasma waves in silver by the method of frustrated total reflection, Z. Physik. 216 (1968) 398-410 [10] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, New York, 1988 [11] E. Hecht, Optics, 4th ed, Addison Wesley, CA, 2002 [12] Chen Kuo-Ping, Optical Admittance Loci Design and Chip Fabrication of Multilayer SPR Bio-sensor Device, master thesis, NTU, 2004 [13] S. Y. Wu, H. P. Ho, Sensitivity Improvement of the Surface Plasmon Resonance Optical Sensor by Using a Gold-silver Transducing Layer, Electron Devices Meeting, 2002. Proceedings. 2002 IEEE Hong Kong, (2002) 63 - 68 [15] G. Kovacs, Optical Excitation of Surface Plasmon-polaritons in Layered Media, Electromagnetic Surface Modes, 1982 [16] G. G. Nenninger, P. Tobiska, J. Homola, S. S. Yee, Long-range Surface Plasmons for High-resolution Surface Plasmon Resonance Sensors, Sensors and Actuators B. 74 (2001) 145-151 [17] J. Dostalek, Analysis and Characterization of an Optical System of a Dual-channel Optical Sensor Based on Resonant Excitation of Surface Plasmons, 2000 [18] 李正中, 薄膜光學與膜技術,3rd ed, 藝軒出版社, 台北, 2002 [19] M. S. Rogalski, S. B. Palmer, Solid State Physics, Gordon & Breach Science publishers, 2000 [20] N.L. Dmitruk, O.I. Mayeva, S.V. Mamykin, O.B. Yastrubchak, M. Klopfleisch, Characterization and application of multilayer diffraction gratings as optochemical sensors, Sensors and Actuators A. Physical. 88 (2000) 52-57 [21] J. Homola, I. Koudela, S. S. Yee, Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison, Sensors and Actuators B. 54 (1999) 16-24 [22] E. Fontana, Surface Plasmon Resonance on a Recordable Compact Disk, IEEE, 2 (2003) 667-672 [23] Z. Salamon, H. A. Macleod, G. Tollin, Surface Plasmon Resonance Spectroscopy as a Tool for Investigating the Biochemical and Bioiphysical Properties of Membrane Protein Systems. I: Theoretical Principles, Biochemica et Biophysica Acta 1331 (1997) 117-129 [24] Chii-Wann Lin, Kuo-Ping Chen, Ming-Chi Su, Tze-Chien Hsiao, Sue-Shan Lee, Shiming Lin, SC Shih, Chih-Kung Lee, Admittance Loci Design Method for Multilayer Surface Plasmon Resonance Devices, Sensors and Actuators B, 2005, accepted. [25] R. M. Emmons, D. G. Hall, Buried-oxide silicon-on-insulator structures. I. Optical waveguide characteristics, IEEE. 28 (1992) 157 - 163 [26] http://www.research.philips.com/profile/people/fellows/coene.html [27] E. Fontana, Theoretical and Experimental Study of the Surface Plasmon Resonance Effect on a Recordable Compact Disk, Applied Optics. 43 (2004) 79-87 [28] Z. Salamon, H. A. Macleod, G. Tollin, Surface Plasmon Resonance Spectroscopy as a Tool for Investigating the Biochemical and Bioiphysical Properties of Membrane Protein Systems. II: Applications to Biological System, Biochemica et Biophysica Acta 1331 (1997) 131-152 [29] H. Arwin, M. Poksinski, K. Johansen, Total Internal Reflection Ellipsometry: Principles and Applications, Applied Optics. 43 (2004) 3028-3036 [30] http://www.nanofilm.de/ [31] http://www.gwctechnologies.com/label-free.html [32] H. A. Macleod, Thin-Film Optical Filters, 3rd ed., Nicola Newey and Verity Cooke, London, 2001 [33]J. M. Brockman, S. M. Fernandez, Grating-coupled surface plasmon resonance for rapid, label-free, array-based sensing, American Laboratory, June 2001 [34] A. K. Bhattacharyya, Electromagnetic Field in Multilayered Structures, Artech House Boston, London, 1993 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35816 | - |
| dc.description.abstract | 表面電漿共振(Surface Plasmon Resonance)是一項新興的光學感測技術,它具有免螢光標定、高靈敏度、即時監控、多功檢測(生化反應、分子濃度)、可大量平行篩檢等優點。本研究著重於系統元件的改善,提出了一維的多層膜設計,和二維的光柵結構,以提高檢測能力。
以光學導納軌跡為理論基礎,我們設計一套非對稱式多層膜,來取代傳統SPR架構的單一金膜,利用兩種介電質材料(二氧化鈦、二氧化矽)高低折射率的週期性結構,結合雙金屬(金、銀)的設計,將共振角由原本的74°調變到61.52°,以及0.25°的信號半高寬,在量測系統的可觀察範圍內,不但擁有較大的動態量測角度,同時也具有較高的解析度及靈敏度。在實驗中,量測SPR信號的角度偏移、以及定角度下的反射強度變化,解析度可達8.13x10-6RIU。此外,利用不同之多層膜結構,進行不同波長穿透深度之解析能力,以模擬使用SPR技術來檢測奈米粒子在流體中位置高低變化的情況。 為了有助於將檢測系統微小化,我們使用以二維的結構陣列(Honeycomb)所組成週期約4μm的光柵,在833nm的入射波長以50°為入射角的選擇之下,同樣可以激發出表面電漿波,這種不需稜鏡耦合的結構,較易與其他元件整合,使系統在設計上更具彈性。 | zh_TW |
| dc.description.abstract | Surface Plasmon Resonance (SPR) is a novel optical sensing technique with advantages of label-free, high sensitivity, real-time monitoring, versatility (bio-chemistry reaction, concentration of molecule), and parallel detection. This research is focused on the improvement of system component , and we using the structure designs of 1D multilayer and 2D grating for enhanced performance.
Based on the theory of optical admittance loci diagram, we designed a new asymmetric multilayer structure to replace traditional single gold layer. We applied the periodic refractive index change of two dielectric materials (TiO2/SiO2) combined with bimetallic design (gold/silver). SPR angle can be modulated to 61.52°, and reduced HMBW to 0.25°. The signal is located in the suitable range of measurement system, and our new device has not only a larger dynamic measurable range (1.33~1.48), but also higher resolution (8.13x10-6). In our experiment, we measured the angular shift of SPR and the reflective intensity change at a fixed angle. The resolution of the device is 8.13x10-6RIU. The multilayer structure was also used to simulate the position of nano-particle in micro-fluid channel. In order to minimize our detection system, we used the grating structure composed of 2D honeycomb array to couple surface plasmon wave and found at at proper incident wavelength of 833nm and angle of 50° has good SPR signal. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:11:42Z (GMT). No. of bitstreams: 1 ntu-94-R92548016-1.pdf: 2807660 bytes, checksum: 1025afa0ec2751f59f0b468c1fbd88e9 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 致謝 II
中文摘要 III Abstract IV 目錄 V 表目錄 XI 第1章 導論 - 1 - 1.1 研究背景 - 1 - 1.2 研究動機 - 3 - 1.3 文獻回顧 - 5 - 第2章 SPR現象與原理 - 8 - 2.1 表面電漿共振現象 - 8 - 2.2 光柵的物理特性與耦合SPR - 14 - 2.3 多層膜理論與分析 - 16 - 2.3.1 多層膜反射率計算 - 16 - 2.3.2 admittance loci - 22 - 2.3.3 利用admittance locus設計多層膜 - 24 - 第3章 實驗方法與設計 - 31 - 3.1 薄膜製作流程 - 31 - 3.2 量測系統 - 36 - 第4章 實驗結果與討論 - 40 - 4.1 非對稱式多層膜 - 40 - 4.1.1 多層膜結構的比較 - 40 - 4.1.2 量測SPR角度偏移 - 41 - 4.1.3 定角度下量測反射強度變化 - 44 - 4.2 多層膜模擬水與奈米粒子 - 53 - 4.2.1 實驗設計 - 53 - 4.2.2 量測結果 - 55 - 4.2.3 TiO2層對SPR信號的影響 - 62 - 4.2.4 理論值與實際值的誤差 - 64 - 4.3 Honeycomb Disk SPR - 68 - 4.3.1 量測結果 - 72 - 4.3.2 討論 - 74 - 第5章 結論 - 80 - 5.1 討論 - 80 - 5.2 未來展望 - 83 - 第6章 參考資料 - 85 - | |
| dc.language.iso | zh-TW | |
| dc.subject | 光柵耦合 | zh_TW |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | 非對稱式多層膜 | zh_TW |
| dc.subject | 導納軌跡圖 | zh_TW |
| dc.subject | grating-coupled | en |
| dc.subject | asymmetric multilayer | en |
| dc.subject | admittance loci | en |
| dc.subject | Surface Plasmon Resonance | en |
| dc.title | 微奈米結構設計於SPR生醫感測元件的應用 | zh_TW |
| dc.title | Advanced Structure Design for SPR Bio-sensor Device | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴信志,李世光,周晟,王安邦,蕭健男 | |
| dc.subject.keyword | 表面電漿共振,非對稱式多層膜,導納軌跡圖,光柵耦合, | zh_TW |
| dc.subject.keyword | Surface Plasmon Resonance,asymmetric multilayer,admittance loci,grating-coupled, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
