Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35815
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李後晶
dc.contributor.authorChia-Eng Wuen
dc.contributor.author吳佳恩zh_TW
dc.date.accessioned2021-06-13T07:11:38Z-
dc.date.available2005-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-26
dc.identifier.citationAllada, R., P. Emery, J. S. Takahashi, and M. Rosbash. 2001. Stopping time: the genetics of fly and mouse circadian clocks. Annu. Rev. Neurosci. 24: 1091-1119.
Bao, S., J. Rihel, E. Bjes, J. Y. Fan, and J. L. Price. 2001. The Drosophila double-timeS mutation delays the nuclear accumulation of period protein and affects the feedback regulation of period mRNA. J. Neurosci. 21:7117-7126.
Baylies, M. K., T. A. Bargiello, F. R. Jackson, and M. W. Young. 1987. Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock. Nature 326: 390-392.
Beaver, L. M., B. O. Gvakharia, D. S. Vollintine, D. M. Hege, R. Stanewsky, and J. M. Giebultowic. 2002. Loss of circadian clock function decreased reproductive finess in males of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 99: 2134-2139.
Beaver, L. M., B. L. Rush, B. O. Gvakharia, and J. M. Giebultowic. 2003. Noncircadian regulation and function of clock genes period and timeless in oogenesis of Drosophila melanogaster. J. Biol. Rhythms 18: 463-472.
Belles, X., and M. D. Piulachs. 1992. Juvenile hormone and maturation of male accessory reproductive glands in the cockroach Blattella germanica (L.). Insect Juvenile Hormone Research 101-109.
Brady, J. 1982. Biological Timekeeping. Cambridge Univ. Press, London. 197 pp.
Colot, H. V., J. C. Hall, and M. Rosbash. 1988. Interspecific comparison of the period gene of Drosophila reveals large blocks of non-conserved coding DNA. EMBOL. 7: 3929-3937.
Cornwell, P. B. 1968. The cockroach, vol. 1. a laboratory insect and an industrial pest. Hutchison Press: London. 391 pp.
Costa, R., A. A. Peixoto, G. Barbujani, and C. P. Kyriacou. 1992. A latitudinal cline in a Drosophila clock gene. Proc. Roy. Soc. Lond. Series B 250: 43-49.
Costa, R., and C. P. Kyriacou. 1998. Functional and evolutionary implication of natural variation in clock genes. Current Opinion in Neurobiology 8: 659-664.
Edmunds, L. N. Jr. 1988. Cellular and molecular basis of biological clocks. Springer-Verlag, New York. 497pp.
Emery, I. F., J. M. Noveral, C. F. Jamison, and K. K. Siwicki. 1997. Rhythms of Drosophila period gene expression in culture. Pro. Natl. Acad. Sci. USA 94: 4092-4096.
Ewer, J., M. Hamblen-Coyle, M. Rosbash, and J. C. Hall. 1990. Requirement for period gene expression in the adult and not during development for locomotor activity rhythms of imaginal Drosophila melanogaster. J. Neurogenetics 7: 31-73.
Feliubadalo, E., L. Vilaplana, and X. Belles. 1996. Morphology and protein pattern of the accessory reproductive glands of male Blattella germanica (Dictyoptera: Blattellidae). Eur. J. Entomol. 93: 211-221.
Frisch, B., P. E. Hardin, M. J. Hamblen-Coyle, M. J. Rosbash, and J. C. Hall. 1994. A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the Drosophila nervous system. Neuron 12: 555-570.
Giebultowicz, J. M. 1999. Insect circadian rhythms: Is it all in their heads? J. Insect Physiol. 45: 791-800.
Giebultowicz, J. M. 2001. Peripheral clocks and their role in circadian timing: insights from insects. Phil. Trans. R. Soc. B356:1791-1799.
Giebultowicz, J. M., R. A. Bell, and R. B. Imberski. 1988. Circadian rhythm of sperm movement in the male reproductive tract of the gypsy moth, Lymantria dispar. J. Insect Physiol. 34: 527-532.
Giebultowicz, J. M., and N. L. Brooks. 1998. The circadian rhythm of sperm release in the coding moth, Cydia pomonella. Ent. Exp. Appl. 88: 229-234.
Giebultowicz, J. M, and D. Hege. 1997. Circadian clock in Malpighian tubules. Nature 386-664.
Giebultowicz, J. M., J. G. Riemann, A. K. Raina, and R. L. Ridgway. 1989. Circadian system controlling release of sperm in the insect testes. Sceince 245: 1098-1100.
Glossop, N. R., and P. E. Hardin. 2002. Central and peripheral circadian oscillator mechanisms in flies and mammals. J. Cell Sci. 115: 3369-3377.
Grima, B., A. Lamouroux, E. Chelot, C. Papin, B. Limbourg-Bouchon, and F. Rouyer. 2002. The F-box protein slimb controls the levels of clock proteins period and timeless. Nature 420: 178-182.
Groves, M. R., N. Hanlon, P. Turowski, B. A. Hemmings, and D. Barford. 1999. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96: 99-110.
Gvakharia, B. O., J. A. Kilgore, P. Bebas, and J. M. Giebultowicz. 2000. Temporal and spatial expression of the period gene in the reproductive system of the codling moth. J. Biol. Rhythms 15: 27-35.
Hall, J. C. 2000. Cryptochromes: sensory reception, transduction, and clock functions subserving circadian systems. Curr. Opin. Neurobiol. 10: 456-466.
Hall, J. C. 2003. Genetics and molecular biology of rhythms in Drosophila and other insects. Adv. Genet. 48: 1-280.
Hardin, P. E., J. C. Hall, and M. Rosbash. 1990. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature (London) 342: 536-540.
Hardin, P. E., J. C. Hall, and M. Rosbash. 1992. Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Pro. Natl. Acad. Sci. USA 89: 11711-11715.
Helfrich-Forster, C. 1995. The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Pro. Natl. Acad. Sci. USA 92: 612-616.
Hofmann, K., P. Bucher, L. Falquet, and A. Bairoch. 1999. The PROSITE database, its status in 1999. Nucleic Acids Research 27: 215-219.
Huang, T. C., J. Tu, T. J. Chow, and T. H. Chen. 1990. Induction of a circadian rhythm in Synechococcus RF-1 while the cells were in a “suspended state”. Planta 194: 436-438.
Ishii, S., and Y. Kuwahara. 1968. Aggregation of German cockroach (Blattella germanic) nymphs. Experientia 15: 88-89.
Janssens, V., and J. Goris. 2001. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signaling. Biochem. J. 353: 417-439.
Kloss, B., J. L. Price, L. Saez, J. Blau, A. Rothenfluh, C. S. Wesley, and M. W. Young. 1998. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase lepsilon. Cell 94:97-107.
Kloss, B., A. Rothenfluh, M. W. Young, and L. Saez. 2001. Phosphorylation of period is influenced by cycling physical associations of double-time, period, and timeless in the Drosophila clock. Neuron 30: 699-706.
Konopka, R. J., and S. Benzer. 1971. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 68: 2112-2116.
Leopold, R. A. 1976. The role of male accessory glands in insect reproduction. Annu. Rev. Entomol. 21: 199-221.
Liang, D., and C. Schal. 1993. Calling behavior of the female German cockroach, Blattella germanica (Dictyoptera: Blattellidae). J. Insect Behav. 6: 603-614.
Lin, T. M. and H. J. Lee. 1996. The expression of locomotor circadian rhythm in female German cockroach, Blattella germanica (L.). Chronobiol. Int. 13: 81-91.
Lin, T. M., and H. J. Lee. 1998. Parallel control mechanisms underlying locomotor activity and sexual receptivity of the female German cockroach, Blattella gernanica (L.). J. Insect Physiol. 44: 1039-1051.
Lin, G. H., R. F. Liou, and H. J. Lee. 2002. The period gene of the German cockroach and its novel linking power between vertebrate and invertebrate. Chronobiol. Int. 19: 1023-1040.
Liu, X., L. Lorenz, Q. Yu, J. C. Hall, and M. Rosbash. 1988. Spatial and temporal expression of the period gene in Drosophila melanogaster. Genes Dev. 2: 228-238.
Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2-△△Ct method. Methods 25: 402-408.
Nicholas, K. B., H. B. J. Nicholas, and D. W. I. Deerfield. 1997. GeneDoc: analysis and visualization of genetic variation. EMBNEW.NEWS 4: 14.
Peixoto, A. A., J. M. Hennessy, I. Townson, G. Hasan, M. Rosbash, R. Costa, and C. P. Kyriacou. 1998. Molecular coevolution within a Drosophila clock gene. Proc. Natl. Acad. Sci. USA 95: 4475-4480.
Pellequer, J., K. A. Wager-Smith, S. A. Kay, and E. D. Getzoff. 1998. Photoactive yellow protein: a structural prototype for the three-dimensional fold of the PAS domain superfamily. Proc. Natl. Acad. Sci. USA 95: 5884-5890.
Piccin, A., M. Couchman, J. D. Clayton, K. Chalmers, R. Costa, and C. P. Kyriacou. 2000. The clock gene period of the housefly, Musca domestica, rescues behavioral rhythmicity in Drosophila melanogaster: evidence for intermolecular coevolution? Genetics 154: 747-758.
Piulach, M. D., J. L. Maestro, and X. Belles. 1992. Juvenile hormone production and accessory reproductive gland development during sexual maturation of male Blattella germanica (L.). Comp. Biochem. Physiol. 102: 477-480.
Plautz, J. D., M. Kaneko, J. C. Hall, and S. A. Kay. 1997. Independent photoreceptive circadian clocks throughout Drosophila. Science 278: 1632-1635.
Preitner, N., F., Damiola, L. Lopez-Molina, J. Zakany, D. Duboule, U. Albrecht, and U. Schibler. 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251-260.
Reppert, S. M., T. Tsai, A. L. Roca, and I. Sauman. 1994. Cloning of a structural and functional homolog of the circadian clock gene period from the giant silkmoth Anteraea pernyi. Neuron 13: 1167-1176.
Riemann, J. G., and R. L. Rudd. 1974. Mediterranean flour moth: Effects of continuous light on the reproductive capacity. Ann. Ent. Soc. Am. 67: 857-860.
Rosato, E. A., A. Peixoto, G. Barbujani, R. Costa, and C. P. Kyriacou. 1994. Molecular polymorphism in the period gene of Drosophila simulans. Genetics 138: 693-707.
Roth, L. M. 1985. A taxonomic revision of the genus Blattella caudell (Dictyoptera, Blattaria: Blattellidae). Entomol. Scand. Suppl. 22: 1-221.
Saez, L., and M. W. Young. 1996. Regulation of nuclear entry of the Drosophila clock proteins Period and Timeless. Neuron 17: 911-920.
Sathyanarayanan, S., X. Zheng, R. Siao, and A. Sehgal. 2004. Posttranslational regulation of Drosophila PERIOD protein by protein phosophatase 2A. Cell 116: 603-615.
Sauman, I., and S. M. Reppert. 1998. Brain control of embryonic circadian rhythms in the silkmoth, Antheraea pernyi. Neuron 20: 741-748.
Sawyer, L. A., J. M. Hennessy, A. A. Peixoto, E. Rosato, H. Parkinson, R. Costa, and C. P. Kyriacou. 1997. Natural variation in a Drosophila clock gene and temperature compensation. Science 278: 2117-2120.
Schal, C., Y-J Gautier, and W. J. Bell. 1984. Behavioural ecology of cockroaches. Bio. Rev. 59: 209-254.
Seelinger, G. 1984. Sex-specific activity patterns in Periplaneta Americana and their relation to mate-finding. Z. Tierpsychol. 65: 309-326.
Spradling, A. 1993. Developmental genetics of oogenesis. In the Development of Drosophila melanogater, M Bate and A Martinez, eds, pp 1-70, Cold Spring Harbor Laboratory Press, Plainview, New York.
Takahashi, J. S. 1995. Molecular neurobiology and genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 18: 531-553.
Tei, H., H. Okamura, Y. Shiqeyoshi, C. Fukuhara, R. Ozawa, M. Hirose, and Y. Sakaki. 1997. Circadian oscillation of mammalian homologue of the Drosophila period gene. Nature 389: 512-516.
Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24: 4816-4822.
Tsai, C. W., and H. J. Lee. 1997. Volatile pheromone detection and calling behavior exhibition: secondary mate-finding strategy of the German cockroach, Blattella germanica (L.). Zoological Studies 36: 325-332.
Tsai, C. W., and H. J. Lee. 2000. Circadian locomotor rhythm masked by the female reproduction cycle in cockroaches. Physiol. Entomol. 25: 63-73.
Tsai, C. W., and H. J. Lee. 2001. Analysis of specific adaptation to a domicile habitat: a comparative study of two closely related cockroach species. J. Med. Entomol. 38: 245-252.
Virshup, D. M. 2000. Protein phosphatase 2A: a panoply of enzymes. Curr. Opin. Cell Bio. 12: 180-185.
Vosshall. L. B., J. L. Price, A. Sechgal, L. Saez, and M. W. Young. 1994. Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263: 1606-1609.
Vosshall, L. B., and M. W. Young. 1995. Circadian rhythm in Drosophila can be driven by period expression in a restricted group of central brain cells. Neuron 15: 345-360.
Warman, G. R., R. D. Newcomb, R. D. Lewis, and C. W. Evans. 2002. Analysis of the circadian clock gene period in the sheep blow fly Lucilia Cuprina. Genet. Res. 75: 257-267.
Weaver, D. R. 1998. The suprachiasmatic nuclei: a 25-year retrospective. J. Biol. Rhythms 13: 100-112.
Wen, H. W., and H. J. Lee. 2000. Unequal coupling between locomotor pacemakers of the German cockroach, Blattella germanica (L.). J. Insect Physiol. 46: 89-97.
Willis, E. R. 1970. Mating behavior of three cockroaches (Latiblattella) from Honduras. Biotropica 2: 120-128.
Williams, J. A., and A. Sehgal. 2001. Molecular component of circadian system in Drosophila. Annu. Rev. Physiol. 63: 729-755.
Wu, W. J., and S. F. Shiao. 1994. Notes on the rediscovery of Blattella bisignata (Brunner) in Taiwan and its morphological discrimination from B. germanica(L.) (Blattaria: Blattellidae). Chin. J. Entomol. 14: 539-542.
Wu, Y. L., and H. J. Lee. 1994 Mating effects on the feeding and locomotion of the German cockroach, Blattella germanica. Physiol. Entomol. 19: 39-45.
Yamazaki, S., R. Numano, M. Abe, A. Hida, R. Takahashia, M. Ueda, G. D. Block, Y. Sakaki, M. Menaker, and H. Tei. 2000. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288: 682-685.
Yang, Z., and A. Sehgal. 2001. Role of molecular oscillations in generating behavior rhythms in Drosophila. Neuron 29: 453-467.
Yu, Q., H. V. Colot, C. P. Kyriacou, J. C. Hall, and M. Rosbash. 1987. Behaviour modification by in vitro mutagenesis of a variable region within the period gene of Drosophila. Nature 326: 765-769.
Zerr, D. M., J. C. Hall, M. Rosbash, and K. K. Siwicki. 1990. Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J. Neurosci. 10: 2749-2762.
Zhang, J., and T. L. Madden. 1997. PowerBLAST: a new network BLAST application for interactive or automated sequence analysis and annotation. Genome Research 7: 649-656.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35815-
dc.description.abstract日週律動現象普遍存在於生物當中,從原生動物到哺乳動物皆有一個近24小時的律動週期。果蠅的相關研究指出,生物時鐘的分子機制是由一個負回饋的機制所調控,時鐘細胞中period (per) 以及timeless (tim) 基因所產生的PER及TIM蛋白會抑制自身基因的表現。如同果蠅,其他昆蟲物種包括德國蜚蠊 (Blattella germanica),per基因的表現具有日週律動的現象。在活動行為方面,德國蜚蠊的雄成蟲具有日週律動,但德國蜚蠊雌成蟲的活動行為受到生殖週期的影響,不具有日週律動的表現,此現象稱為掩蓋效應 (masking effect)。我們推測,生殖系統中的周邊時鐘 (peripheral clock),會影響位於腦中的主要時鐘 (master clock) 對活動行為日週律動的表現。雙紋姬蠊 (B. bisignata) 是德國蜚蠊的近緣種,其雌蟲的活動行為日週律動表現不受生殖週期的影響,不具有掩蓋效應。本篇研究雙紋姬蠊與德國蜚蠊的時鐘基因per在頭部以及生殖系統中睪丸、卵巢與副腺的表現情況,試圖解釋掩蓋效應與日週律動的關係。選殖出的雙紋姬蠊per cDNA序列與德國蜚蠊per cDNA序列具有高度的相似性。根據Real-Time RT PCR的結果,per mRNA在雙紋姬蠊與德國蜚蠊的雄蟲頭部與部分生殖組織當中皆有相似的表現,其表現量在夜晚達到高峰。此外,per mRNA在雙紋姬蠊與德國蜚蠊雌蟲頭部與卵巢的表現顯示,per基因在這些組織當中似乎扮演另一種的調控角色,而與雄蟲頭部的表現情況不同。zh_TW
dc.description.abstractCircadian rhythms are nearly 24-hour rhythms of biological processes that persist under constant environmental conditions. These rhythms have been described in a variety of organisms ranging from prokaryotes to mammals. In Drosophila, the driving force underlying the circadian system is the pacemaker cells with time signal generated by the interactions of the negative feedback loop of period and timeless genes. In several other insect species, including the German cockroach, per expression undergoes circadian fluctuations. Oddly, the overt rhythm of locomotion of female German cockroach is masked by its own reproductive cycle. We suspect that clocks in peripheral tissues, especially in reproductive organs, may affect the brain-clock (master clock) which has been demonstrated to control the locomotor circadian rhythm. However, the Blattella bisignata, a closely-related species of the B. germanica, expresses locomotor circadian rhythm without masking effect in both sexes. This study focuses on the expression of per in brain and reproductive tissues in both species to unveil the possible interaction of clock gene expression under masking effect of locomotor circadian rhythm. Period gene in the double-striped cockroach has been cloned and its partial sequence shows a high degree of homology with the one from the German cockroach. Furthermore, the expression patterns of period mRNA were similar in heads and reproductive tissues, which were peaked at night. The exceptions in expression patterns of testes of German cockroach and ovaries of both species suggest that different regulatory clock mechanisms maybe involved.en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:11:38Z (GMT). No. of bitstreams: 1
ntu-94-R91632003-1.pdf: 647604 bytes, checksum: 8bb919031cb7534445bb10c25acb82ae (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents
Literature review……………………………………………………………..1
Molecular clock……………………………………………………………1
Master and peripheral clocks…………………………………………………..5
Comparison between Blattella bisignata and B. germanica……………...10
Calling and mating behavior of the female German cockroach………...11
Reproductive system of the male Blattella germanica………………….12
Posttranslational regulation of PER……………………………………...14
Introduction…………………………………………………………………...17
Materials and Methods……………………………………………………….20
Insects………………………………………………………………………20
Reverse transcription (RT)-PCR………………………………………….20
Subcloning and sequencing………………………………………………..21
Rapid amplification of cDNA ends (RACE)……………………………...22
Computer analysis………………………………………………………….22
Real Time RT-PCR…………………………………………………………22
Western blotting…………………………………………………………….23
Results………………………………………………………………………….26
Cloning of period cDNA from Blattella bisgnata………………………..26
Sequence homology and structure analysis of PER………………………27
Temporal expression of period mRNA in heads and reproductive tissues of Blattella germanica…………………………………………………………29
Temporal expression of period mRNA in heads and reproductive tissues of Blattella bisignata…………………………………………………………..30
Temporal expression of PER in heads and reproductive tissues of Blattella germanica……………………………………………………………………32
Discussion………………………………………………………………………33
References………………………………………………………………………41
Appendix………………………………………………………………………..74
Acknowledgements…………………………………………………………….86
dc.language.isoen
dc.subject時鐘基因zh_TW
dc.subjectclock gene perioden
dc.title雙紋姬嬚與德國蜚嬚時鐘基因period的比較研究zh_TW
dc.titleA comparative study of the clock gene period in Blattella bisignata and B. germanicaen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.coadvisor劉瑞芬
dc.contributor.oralexamcommittee王重雄,路光暉,張俊哲
dc.subject.keyword時鐘基因,zh_TW
dc.subject.keywordclock gene period,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2005-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
632.43 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved