請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35749
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳誠亮 | |
dc.contributor.author | Tzu-Nung Li | en |
dc.contributor.author | 李子農 | zh_TW |
dc.date.accessioned | 2021-06-13T07:08:08Z | - |
dc.date.available | 2005-07-30 | |
dc.date.copyright | 2005-07-30 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-27 | |
dc.identifier.citation | [1] Aggarwal, A., and Floudas, C. A. “Synthesis of general distillation sequences nonsharp
separations,” Comp. Chem. Eng., vol. 14, pp. 631, 1990. [2] Agreda, V. H., Partin, L. R., and Heise, W. H. “High purty methyl acetate via reactive distillation,” Chem. Eng. Prog., vol. 86, pp. 40, 1990. [3] Alejski, K. “Computation of the reacting distillation dolumn using a liquid mixing model on the plates,” Comp. Chem. Eng., vol. 15, pp. 313, 1991. [4] Barbosa, D., and Doherty, M. F. “The influence of equilibrium chemical reactions on vapor liquid phase diagrams,” Chem. Eng. Sci., vol. 43, pp. 529, 1988. [5] Barbosa, D., and Doherty, M. F. “The simple distillation of homogeneous reactive mixture,” Chem. Eng. Sci., vol. 43, pp. 541, 1988. [6] Barbosa, D., and Doherty, M. F. “Design and minimum reflux calculations for single-feed multicomponent reactive distillation column,” Chem. Eng. Sci., vol. 43, pp. 1523, 1988. [7] Barbosa, D., and Doherty, M. F. “Design and minimum reflux calculations for double-feed multicomponent reactive distillation column,” Chem. Eng. Sci., vol. 43, pp. 2377, 1988. [8] Barttfeld, M., Aguirre, P. A., and Grossmann, I. E. “Alternative reperesentations and formulations for the economic optimization of multicomponent distillation columns,” Comp. Chem. Eng., vol. 27, pp. 363, 2003. [9] Brooke, A., Kendrick. D., Meeraus, A., Raman, R., and Rosenthal, R. E. GMAS : A user’s guide, GAMS Development Corporation, 1988. [10] Buzad, G., and Doherty, M. F. “New tools for the design of kinetically controlled reactive distillation columns for ternary mixtures,” Comp. Chem. Eng., vol. 19, pp. 395, 1995. [11] Cardoso, M. F., Salcedo, R. L., and de Azevedo, S. F. “Nonequilibrium simulated annealing: A faster approach to combinatorial minimization,” Ind. Eng. Che. Res., vol. 33, pp. 1908, 1994. [12] Cardoso, M. F., Salcedo, R. L., and de Azevedo, S. F. “The simplex-simulated annealing approach to continuous nonlinear optimization,” Com. Che. Eng., vol. 20, pp. 1065, 1996. [13] Cardoso, M. F., Salcedo, R. L., de Azevedo, S. F., and Barbosa, D. “A simulated annealing approach to the solution of MINLP problems,” Com. Che. Eng., vol. 21, pp. 1349, 1997. [14] Cardoso, M. F., Salcedo, R. L., de Azevedo, S. F., and Barbosa, D. “Optimization of reactive distillation processes with simulated annealing,” Chem. Eng. Sci., vol. 55, pp. 5059, 2000. [15] Chang, Y. A., and Seader, J. D. “Simulation of continuous reactive distillation by a homotopy-continuation method,” Com. Che. Eng., vol. 12, pp. 1243, 1988. [16] Ciric, A. R., and Gu, D. “Synthesis of nonequilibrium reactive distillation processes by MINLP optimization,” AIChE Journal, vol. 40, pp. 1479, 1994. [17] Doherty,M.F., and Buzad, G. “Reactive distillation by design,” Trans Inst. Chem. Eng., Part A,vol. 70, pp. 448, 1992. [18] Doherty, M.F., and Malone M.F. “Conceptual design of distillation system,” McGraw-Hill Chemical Engineering Series. New York. 2001. [19] Douglas, J. M. “Conceptual design of chemical processes,” McGraw-Hill, New York. 1988. [20] Frey T., and Stichlmair J. “Thermodynamic fundamentals of reactive distillation,” Chem. Eng. Tech., vol. 22, pp. 11, 1999. [21] Georgiadis, M. C., Schenk, M., Pistikopoulos, E. N., and Gani, R. “The interactions of design, control and operability in reactive distillation systems,” Comp. Chem. Eng., vol. 26, pp. 735, 2002. [22] Gumus, Z. H., and Ciric, A. R. “Reactive distillation column design with vapor/liquid/liquid equilibria,” Comp. Chem. Eng., vol. 21, pp. s983, 1997. [23] Huss, R. S., Chen, F., Malone, M. F., and Doherty, M. F. “Reactive distillation for methyl acetate production” Comp. Chem. Eng., vol. 27, pp. 1855, 2003. [24] Noeres, C., Kenig, E. Y., andGorak, A. “Modeling of reactive separation processes: Reactive absorption and reactive distillation,” Chem. Eng. Proc., vol. 42, pp. 157, 2003. [25] Sakizlis, V., Perkins, J. D., and E. N. Pistikopoulos. “Parametric controllers in simultaneous process and control design optimization,” Ind. Eng. Chem. Res., vol. 42, pp. 4545, 2003. [26] Stichlmair, B. J., and Frey, T. “Reactive distillation processes,” Chem. Eng. Technol., vol. 22, pp. 95, 1999. [27] Stichlmair, J., and Frey, T. “Mixed-integer nonlinear programming optimization of reactive distillation processes,” Ind. Eng. Chem. Res., vol. 40, pp. 5978, 2001. [28] Stein, E., Kienle, A., Esparta, A. R. J., Mohl, K. D., and Gilles, E. D. “Optimization of a reactor network for ethylene glycol synthesis-an algorithm approach,” Com. Che. Eng. (suppl.), vol. 23, pp. S903, 1999. [29] Stock, J. R. and Lambert, D. M. Strategic logistics management,, 4 ed. McGraw-Hill Companies, Inc., 2001. [30] Popken, T., Gotze, L., and Gmehling, L. “Reaction kinetics and chemical equilibrium of homogeneously and heterogeneously catalyzed acetic acid esterfication with methanol and methyl acetate hydrolysis” Ind. Eng. Chem. Res., vol. 39, pp. 2601, 2000. [31] Twigg, G. H., and Lichtenstein H. J. “Calculation methods for distillation systems with reaction, ” Chem. Eng. Comm., vol. 16, pp. 91, 1982. [32] Viswanathan, J., and Grossmann, I. E. “A combined penalty function and outer approximation method for MINLP optimization,” Comp. Chem. Eng., vol. 14, pp. 769, 1990. [33] Viswanathan, J., and Grossmann, I. E. “An alternative MINLP model for finding the number of trays required for a specified separation objective,” Comp. Chem. Eng., vol. 17, pp. 949, 1993. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35749 | - |
dc.description.abstract | 本研究提出一個以逐層式模式為基礎之完整反應蒸餾系統設計。
一般在研究反應蒸餾設計時,部分的結構變數往往需要靠經驗或直覺來決定、 而操作變數則由標準的最適化技術來求得。 本文將以價格考量所有變數,建立以低廉價格為取向之目標函數, 將所有變數納入目標函數中。 因此,本研究提出一個針對反應性蒸餾塔設計方法,能對所有結構變數及操作變數 作同時最適化的階層式模式。 將處理反應性蒸餾問題的階層式模式整合成一個混合整數非線性最適化問題, 其中同時考慮原物料成本、操作成本、投資成本, 並討論多重進料對系統造成可能的影響。 本文在假設不考慮液液分相之異相系統的前提下,熱力學模式可以選擇系統適合 之模式代入超結構中,如:理想模式,Willson模式等;而對於液氣平衡的情形 使用莫菲板效率表示塔板之分離效率,使模式能夠更真實的描述反應蒸餾之行為。 並將原本只能處理均相反應系統的模式,增加考慮固相觸媒的影響,使超結構能 延伸到異相反應系統。 最後,參考文獻所提供生產乙二醇和乙酸甲酯之模擬範例,由模擬的結果可得知, 以MINLP來處理均相及異相反應之反應性蒸餾系統最適化的可行性。 | zh_TW |
dc.description.abstract | A complete mathematical programming formulation based on a tray-by-tray model
is presented for optimal design of homogeneous reactive distillation processes. Most of the researches on reactive distillation, some the structural details of the process are found by empiricism or intuition, and the operational variables can be determined by standard optimization techniques. An optimal model which minimize total costs with all priced structural variables and priced operational variables was set up. A tray-by-tray model was proposed for reactive distillation column design that could simultaneous optimize all structural variables and operational variables. The synthesis of reactive distillation problems can be formulated as a mixed-integer nonlinear programming (MINLP), where raw material cost, the operating costs and the investment costs are considered simultaneously and the possible benefits of multiple feed locations is emphasized. This study is supposed not considering the liquid-liquid equilibria system, the suitable thermodynamics model can be applied to the superstructure, such as: ideal model, the Willson model and so on; as for the liquid-vapor equilibria phenomena, the Murphree plate efficiency is indicated the separating efficiency of plate, and model could have the more real description of behavior reactive distillation. Apply the effect of catalyst to the model that only can handle homogeneous reaction system, make the superstructure could be extended to heterogeneous reactive distillation system. Production ethylene glycol and methyl acetate processes from literature is supplied to demonstrate the proposed simultaneous optimization approach on the homogeneous and heterogeneous reactive distillation column design by MINLP technique. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:08:08Z (GMT). No. of bitstreams: 1 ntu-94-R92524073-1.pdf: 1384275 bytes, checksum: 5156bfd85cbadfc242307c18eb9cf233 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 1. 緒論 1
1.1. 前言 1 1.2. 反應蒸餾之簡介 2 1.3. 文獻回顧 3 1.4. 研究動機與目的 5 1.5. 組織章節 7 2. 反應性蒸餾塔逐層式超結構模式建構 9 2.1. 模式建立之背景說明 9 2.2. 模式建立之基本假設條件 10 2.3. 逐層式超結構模式 12 2.4. 模式之符號、系統參數與系統變數 14 2.4.1 符號說明 14 2.4.2 系統參數 15 2.4.3 系統變數 16 2.5. 目標函數與限制式 18 2.5.1 0,1變數決定塔板數限制式 18 2.5.2 質量平衡限制式 18 2.5.3 能量平衡限制式 21 2.5.4 動力關系式 22 2.5.5 熱力關系式 23 2.5.6 邏輯限制式 24 2.5.7 進料物流數目限制式 25 2.5.8 塔結構限制式 25 2.5.9 莫菲板效率限制式 26 2.5.10目標函數 26 2.5.11 反應性蒸餾塔逐層式超結構模式整合 28 3. 均相反應系統模式情境模擬結果分析與討論 31 3.1. 最適化軟體 31 3.2. 模式之情境模擬 32 3.3. 結果與討論 35 3.3.1 例一:多重進料及理想板假設 35 3.3.2 例一:單一及理想板假設 38 3.4. 非理想板模式之情境模擬 41 3.4.1 例一:多重進料及板效率E=75% 41 3.4.2 例二:單一進料及板效率E=75% 45 3.4.3 例三:多重進料及板效率E=50% 45 3.4.4 例四:單一進料及板效率E=50% 48 4. 異相反應系統模式情境模擬結果分析與討論 57 4.1. 異相反應階層式超結構模式 57 4.1.1 模式建立之基本假設條件 58 4.1.2 異相反應系統新增之符號 58 4.2. 異相反應系統之限制式 59 4.2.1 0,1變數決定反應板限制式 59 4.2.2 異相反應動力關系式 59 4.2.3 目標函數 60 4.2.4 反應性蒸餾塔逐層式超結構模式整合 61 4.3. 模式之情境模擬 63 4.4. 結果與討論 65 5. 結論與未來展望 71 5.1. 結論 71 5.2. 未來展望 72 參考文獻 75 作者簡歷 79 | |
dc.language.iso | zh-TW | |
dc.title | 以數學規劃法作反應性蒸餾塔最適化設計 | zh_TW |
dc.title | Synthesis of Reactive Distillation Column Design by MINLP Optimization | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃孝平,余政靖,張玨庭,陳文智 | |
dc.subject.keyword | 數學規劃法,反應性蒸餾, | zh_TW |
dc.subject.keyword | MINLP,reactive distillation, | en |
dc.relation.page | 79 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。