Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35739
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張雅君(Ya-Chun Chang)
dc.contributor.authorPin-Chun Linen
dc.contributor.author林品均zh_TW
dc.date.accessioned2021-06-13T07:07:37Z-
dc.date.available2012-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-20
dc.identifier.citationAdams, M.J., Antoniw, J.F., and Kreuze, J. (2009). Virgaviridae: a new family of rod-shaped plant viruses. Arch Virol 154, 1967-1972.
Ajjikuttira, P., Loh, C.S., and Wong, S.M. (2005). Reciprocal function of movement proteins and complementation of long-distance movement of Cymbidium mosaic virus RNA by Odontoglossum ringspot virus coat protein. J Gen Virol 86, 1543-1553.
Albrecht, V., Ingenfeld, A., and Apel, K. (2006). Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol Biol 60, 507-518.
Anderson, G.H., Alvarez, N.D.G., Gilman, C., Jeffares, D.C., Trainor, V.C.W., Hanson, M.R., and Veit, B. (2004). Diversification of genes encoding mei2-like RNA binding proteins in plants. Plant Molecular Biology 54, 653-670.
Ascencio-Ibanez, J.T., Sozzani, R., Lee, T.J., Chu, T.M., Wolfinger, R.D., Cella, R., and Hanley-Bowdoin, L. (2008). Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148, 436-454.
Ashfield, T., Ong, L.E., Nobuta, K., Schneider, C.M., and Innes, R.W. (2004). Convergent evolution of disease resistance gene specificity in two flowering plant families. Plant Cell 16, 309-318.
Asurmendi, S., Berg, R.H., Koo, J.C., and Beachy, R.N. (2004). Coat protein regulates formation of replication complexes during tobacco mosaic virus infection. Proc Natl Acad Sci U S A 101, 1415-1420.
Baud, S., Guyon, V., Kronenberger, J., Wuilleme, S., Miquel, M., Caboche, M., Lepiniec, L., and Rochat, C. (2003). Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J 33, 75-86.
Bendahmane, M., Fitchen, J.H., Zhang, G., and Beachy, R.N. (1997). Studies of coat protein-mediated resistance to tobacco mosaic tobamovirus: correlation between assembly of mutant coat proteins and resistance. J Virol 71, 7942-7950.
Benlloch, R., Roque, E., Ferrandiz, C., Cosson, V., Caballero, T., Penmetsa, R.V., Beltran, J.P., Canas, L.A., Ratet, P., and Madueno, F. (2009). Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. Plant J 60, 102-111.
Berrin, J.G., Pierrugues, O., Brutesco, C., Alonso, B., Montillet, J.L., Roby, D., and Kazmaier, M. (2005). Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana. Mol Genet Genomics 273, 10-19.
Chang, C.A., and Pang, J. H. (1990). Preparation of antisera against Cymbidium mosaic virus and Odontoglossum ringspot virus and their uses in serological indexing for orchid industry in Taiwan. Plant Prot Bul 32, 336.
Chen, C.C., Hwang, J.K., and Yang, J.M. (2006a). (PS)(2): protein structure prediction server. Nucleic Acids Research 34, W152-W157.
Chen, G., Bi, Y.R., and Li, N. (2005a). EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J 41, 364-375.
Chen, M.H., and Citovsky, V. (2003). Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35, 386-392.
Chen, M.H., Sheng, J.S., Hind, G., Handa, A.K., and Citovsky, V. (2000). Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. Embo Journal 19, 913-920.
Chen, M.H., Tian, G.W., Gafni, Y., and Citovsky, V. (2005b). Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 138, 1866-1876.
Chen, Z., Hartmann, H.A., Wu, M.J., Friedman, E.J., Chen, J.G., Pulley, M., Schulze-Lefert, P., Panstruga, R., and Jones, A.M. (2006b). Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins. Plant Mol Biol 60, 583-597.
Chng, C.G., Wong, S.M., Mahtani, P.H., Loh, C.S., Goh, C.J., Kao, M.C., Chung, M.C., and Watanabe, Y. (1996). The complete sequence of a Singapore isolate of odontoglossum ringspot virus and comparison with other tobamoviruses. Gene 171, 155-161.
Citovsky, V., Knorr, D., Schuster, G., and Zambryski, P. (1990). The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60, 637-647.
Dawson, W.O., Bubrick, P., and Grantham, G.L. (1988). Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement and symptomatology. Phytopathology 78, 783-789.
Deom, C.M., Oliver, M.J., and Beachy, R.N. (1987). The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 389-394.
Dettmer, J., Liu, T.Y., and Schumacher, K. (2010). Functional analysis of Arabidopsis V-ATPase subunit VHA-E isoforms. Eur J Cell Biol 89, 152-156.
Dietrich, C., and Maiss, E. (2003). Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. J Gen Virol 84, 2871-2876.
Earley, K.W., Shook, M.S., Brower-Toland, B., Hicks, L., and Pikaard, C.S. (2007). In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J 52, 615-626.
Edwardson, J.R., and Zettler, F.W. (1988). Odontoglossum ringspot virus The Plant Viruses Vol 2 Van Regenmortel, MHV, and Fraenkel-Conrat, H (eds), Plenum Publishing Corperation, New York, USA, 233-247.
Fontes, E.P., Santos, A.A., Luz, D.F., Waclawovsky, A.J., and Chory, J. (2004). The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev 18, 2545-2556.
Fristedt, R., Granath, P., and Vener, A.V. (2010). A protein phosphorylation threshold for functional stacking of plant photosynthetic membranes. PLoS One 5, e10963.
Fujimori, K., and Ohta, D. (1998). An Arabidopsis cDNA encoding a bifunctional glutamine amidotransferase/cyclase suppresses the histidine auxotrophy of a Saccharomyces cerevisiae his7 mutant. FEBS Lett 428, 229-234.
Harries, P.A., Park, J.W., Sasaki, N., Ballard, K.D., Maule, A.J., and Nelson, R.S. (2009). Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc Natl Acad Sci U S A 106, 17594-17599.
Holt, C.A., and Beachy, R.N. (1991). In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 181, 109-117.
Hong, Y., Shi, N.N., Xu, Y., Yang, K.F., Chen, Y., Wang, H.Z., and Xu, X.B. (2011). Development of a sensitive diagnostic assay to detect Cymbidium mosaic virus and Odontoglossum ringspot virus in members of the Orchidaceae. J Hortic Sci Biotech 86, 69-73.
Hu, W.W., Wong, S.M., Goh, C.J., and Loh, C.S. (1998). Synergism in replication of cymbidium mosaic potexvirus (CymMV) and odontoglossum ringspot tobamovirus (ORSV) RNA in orchid protoplasts. Arch Virol 143, 1265-1275.
Ihnatowicz, A., Pesaresi, P., and Leister, D. (2007). The E subunit of photosystem I is not essential for linear electron flow and photoautotrophic growth in Arabidopsis thaliana. Planta 226, 889-895.
Ishibashi, T., Isogai, M., Kiyohara, H., Hosaka, M., Chiku, H., Koga, A., Yamamoto, T., Uchiyama, Y., Mori, Y., Hashimoto, J., et al. (2006). Higher plant RecA-like protein is homologous to RadA. DNA Repair (Amst) 5, 80-88.
Ishida, K., Yamashino, T., and Mizuno, T. (2008). Expression of the cytokinin-induced type-A response regulator gene ARR9 is regulated by the circadian clock in Arabidopsis thaliana. Biosci Biotechnol Biochem 72, 3025-3029.
Jenner, C.E., Nellist, C.F., Barker, G.C., and Walsh, J.A. (2010). Turnip mosaic virus (TuMV) is able to use alleles of both eIF4E and eIF(iso)4E from multiple loci of the diploid Brassica rapa. Mol Plant Microbe Interact 23, 1498-1505.
Jensen, D.D., and Gold, A.H. (1951). A Virus Ring Spot of Odontoglossum Orchid - Symptoms, Transmission, and Electron Microscopy. Phytopathology 41, 648-653.
Kaczor, C.M., Smith, M.W., Sangwan, I., and O'Brian, M.R. (1994). Plant delta-aminolevulinic acid dehydratase. Expression in soybean root nodules and evidence for a bacterial lineage of the Alad gene. Plant Physiol 104, 1411-1417.
Kevei, E., Gyula, P., Feher, B., Toth, R., Viczian, A., Kircher, S., Rea, D., Dorjgotov, D., Schafer, E., Millar, A.J., et al. (2007). Arabidopsis thaliana circadian clock is regulated by the small GTPase LIP1. Curr Biol 17, 1456-1464.
Khentry, Y., Paradornuwat, A., Tantiwiwat, S., Phansiri, S., and Thaveechai, N. (2006). Incidence of Cymbidium mosaic virus and Odontoglossum ringspot virus in Dendrobium spp. in Thailand. Crop Prot 25, 926-932.
Krouk, G., Lacombe, B., Bielach, A., Perrine-Walker, F., Malinska, K., Mounier, E., Hoyerova, K., Tillard, P., Leon, S., Ljung, K., et al. (2010). Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18, 927-937.
Lartey, R.T., Ghoshroy, S., and Citovsky, V. (1998). Identification of an Arabidopsis thaliana mutation (vsm1) that restricts systemic movement of tobamoviruses. Mol Plant Microbe Interact 11, 706-709.
Leasure, C.D., Fiume, E., and Fletcher, J.C. (2009). The essential gene EMB1611 maintains shoot apical meristem function during Arabidopsis development. Plant J 57, 579-592.
Lee, S.C. (2008). Development of detection methods for two important orchid viruses, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV), and construction and characterization of ORSV infectious cDNA clone Doctoral dissertation of Graduate Institute of Plant Pathology and Microbiology College of Bioresourcrs and Agricultre of National Tawan University.
Lee, S.C., and Chang, Y.C. (2008). Performances and application of antisera produced by recombinant capsid proteins of Cymbidium mosaic virus and Odontoglossum ringspot virus. European Journal of Plant Pathology, 297-306.
Lewandowski, D.J., and Dawson, W.O. (1998). Deletion of internal sequences results in tobacco mosaic virus defective RNAs that accumulate to high levels without interfering with replication of the helper virus. Virology 251, 427-437.
Li, J., Brader, G., and Palva, E.T. (2008). Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin b1 in Arabidopsis. Mol Plant 1, 482-495.
Li, Y., Wu, M.Y., Song, H.H., Hu, X., and Qiu, B.S. (2005). Identification of a tobacco protein interacting with tomato mosaic virus coat protein and facilitating long-distance movement of virus. Arch Virol 150, 1993-2008.
Liepman, A.H., and Olsen, L.J. (2003). Alanine aminotransferase homologs catalyze the glutamate:glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis. Plant Physiol 131, 215-227.
Liu, E., and Page, J.E. (2008). Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods 4, 5.
Mahajan, S.K., Chisholm, S.T., Whitham, S.A., and Carrington, J.C. (1998). Identification and characterization of a locus (RTM1) that restricts long-distance movement of tobacco etch virus in Arabidopsis thaliana. Plant J 14, 177-186.
Manfre, A., Glenn, M., Nunez, A., Moreau, R.A., and Dardick, C. (2011). Light quantity and photosystem function mediate host susceptibility to Turnip mosaic virus via a salicylic acid-independent mechanism. Mol Plant Microbe Interact 24, 315-327.
McGarry, R.C., Barron, Y.D., Carvalho, M.F., Hill, J.E., Gold, D., Cheung, E., Kraus, W.L., and Lazarowitz, S.G. (2003). A novel Arabidopsis acetyltransferase interacts with the geminivirus movement protein NSP. Plant Cell 15, 1605-1618.
McLean, B.G., Zupan, J., and Zambryski, P.C. (1995). Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 7, 2101-2114.
Morrone, D., Chen, X., Coates, R.M., and Peters, R.J. (2010). Characterization of the kaurene oxidase CYP701A3, a multifunctional cytochrome P450 from gibberellin biosynthesis. Biochem J 431, 337-344.
Ndimba, B.K., Chivasa, S., Hamilton, J.M., Simon, W.J., and Slabas, A.R. (2003). Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3, 1047-1059.
Noh, S.J., Kwon, C.S., and Chung, W.I. (2002). Characterization of two homologs of Ire1p, a kinase/endoribonuclease in yeast, in Arabidopsis thaliana. Biochim Biophys Acta 1575, 130-134.
Osbourn, J.K., Sarkar, S., and Wilson, T.M. (1990). Complementation of coat protein-defective TMV mutants in transgenic tobacco plants expressing TMV coat protein. Virology 179, 921-925.
Otegui, M.S., Noh, Y.S., Martinez, D.E., Vila Petroff, M.G., Staehelin, L.A., Amasino, R.M., and Guiamet, J.J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41, 831-844.
Park, K., Suh, M., and Cheong, J.a.C., D (1999). Isolation of defense-related genes from Nicotiana glutinosa infected by tobacco mosaic virus using a modified differential screening.
Park, K.S., Cheong, J.J., Lee, S.J., Suh, M.C., and Choi, D. (2000). A novel proteinase inhibitor gene transiently induced by tobacco mosaic virus infection. Biochim Biophys Acta 1492, 509-512.
Paul, H.L. (1975). Odontoglossum ringspot viurs. CMI/AAB Descr Pl Viruses No. 155, 4 pp.
Paul, H.L., Wetter, C., Wittmann, H.G., and Brandes, J. (1965). [Studies on the Odontoglossum ringspot virus, a relative of the tobacco mosaic virus. I. Physical, chemical, serological and symptomatological findings]. Z Vererbungsl 97, 186-203.
Pineda, M., Sajnani, C., and Baron, M. (2010). Changes induced by the Pepper mild mottle tobamovirus on the chloroplast proteome of Nicotiana benthamiana. Photosynth Res 103, 31-45.
Piron, F., Nicolai, M., Minoia, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C., and Bendahmane, A. (2010). An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 5, e11313.
Rocha, C.S., Santos, A.A., Machado, J.P., and Fontes, E.P. (2008). The ribosomal protein L10/QM-like protein is a component of the NIK-mediated antiviral signaling. Virology 380, 165-169.
Roux, F., Gao, L., and Bergelson, J. (2010). Impact of initial pathogen density on resistance and tolerance in a polymorphic disease resistance gene system in Arabidopsis thaliana. Genetics 185, 283-291.
Saito, T., Yamanaka, K., and Okada, Y. (1990). Long-distance movement and viral assembly of tobacco mosaic virus mutants. Virology 176, 329-336.
Santos, A.A., Carvalho, C.M., Florentino, L.H., Ramos, H.J., and Fontes, E.P. (2009). Conserved threonine residues within the A-loop of the receptor NIK differentially regulate the kinase function required for antiviral signaling. PLoS One 4, e5781.
Schepetilnikov, M., Kobayashi, K., Geldreich, A., Caranta, C., Robaglia, C., Keller, M., and Ryabova, L.A. (2011). Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. EMBO J 30, 1343-1356.
Shibuya, M., Katsube, Y., Otsuka, M., Zhang, H., Tansakul, P., Xiang, T., and Ebizuka, Y. (2009). Identification of a product specific beta-amyrin synthase from Arabidopsis thaliana. Plant Physiol Biochem 47, 26-30.
Siegel, A., Zaitlin, M., and Sehgal, O.P. (1962). The isolation of defective tobacco mosaic virus strains. Proc Natl Acad Sci U S A 48, 1845-1851.
Solomon, M., Belenghi, B., Delledonne, M., Menachem, E., and Levine, A. (1999). The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11, 431-443.
Streitner, C., Hennig, L., Korneli, C., and Staiger, D. (2010). Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC Plant Biol 10, 221.
Stubbs, G., Warren, S., and Holmes, K. (1977). Structure of RNA and RNA binding site in tobacco mosaic virus from 4-A map calculated from X-ray fibre diagrams. Nature 267, 216-221.
Takamatsu, N., Ishikawa, M., Meshi, T., and Okada, Y. (1987). Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J 6, 307-311.
Timm, S., Florian, A., Jahnke, K., Nunes-Nesi, A., Fernie, A.R., and Bauwe, H. (2011). The hydroxypyruvate-reducing system in Arabidopsis: multiple enzymes for the same end. Plant Physiol 155, 694-705.
Tomenius, K., Clapham, D., and Meshi, T. (1987). Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160, 363-371.
Ueki, S., and Citovsky, V. (2002). The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nature Cell Biology 4, 478-485.
Veronese, P., Nakagami, H., Bluhm, B., Abuqamar, S., Chen, X., Salmeron, J., Dietrich, R.A., Hirt, H., and Mengiste, T. (2006). The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18, 257-273.
Whitham, S.A., Yamamoto, M.L., and Carrington, J.C. (1999). Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proc Natl Acad Sci U S A 96, 772-777.
Wolf, S., Deom, C.M., Beachy, R.N., and Lucas, W.J. (1989). Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246, 377-379.
Wong, S.M., Chng, C.G., Lee, Y.H., Tan, K., and Zettler, F.W. (1994). Incidence of Cymbidium Mosaic and Odontoglossum Ringspot Viruses and Their Significance in Orchid Cultivation in Singapore. Crop Prot 13, 235-239.
Yu, H.H., and Wong, S.M. (1998). A DNA clone encoding the full-length infectious genome of odontoglossum ringspot tobamovirus and mutagenesis of its coat protein gene. Arch Virol 143, 163-171.
Zettler, F.W., Ko, N.J., Wisler, G.C., Elliott, M.S., and Wong, S.M. (1990). Viruses of Orchids and Their Control. Plant Dis 74, 621-626.
Zhang, C.Z., Liu, Y.Y., Sun, X.C., Qian, W.D., Zhang, D.D., and Qiu, B.S. (2008a). Characterization of a specific interaction between IP-L, a tobacco protein localized in the thylakoid membranes, and Tomato mosaic virus coat protein. Biochem Bioph Res Co 374, 253-257.
Zhang, H.Y., Xie, X.Z., Xu, Y.Z., and Wu, N.H. (2004). Isolation and functional assessment of a tomato proteinase inhibitor II gene. Plant Physiol Biochem 42, 437-444.
Zhang, J., Addepalli, B., Yun, K.Y., Hunt, A.G., Xu, R., Rao, S., Li, Q.Q., and Falcone, D.L. (2008b). A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One 3, e2410.
Zhang, J.Z., and Somerville, C.R. (1997). Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2 mutant of Arabidopsis. Proc Natl Acad Sci U S A 94, 7349-7355.
Zhang, Y., Cheng, Y.T., Bi, D., Palma, K., and Li, X. (2005). MOS2, a protein containing G-patch and KOW motifs, is essential for innate immunity in Arabidopsis thaliana. Curr Biol 15, 1936-1942.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35739-
dc.description.abstract植物病毒Tobamovirus屬的鞘蛋白(capsid protein, CP)為此類病毒於植物中系統性移動之關鍵因數,而其分子機制如寄主蛋白之參與等皆尚未明瞭。前人研究顯示,齒舌蘭輪斑病毒(Odotoglossum ringspot virus, ORSV) 之鞘蛋白上麩胺酸 (E100) 之突變將會造成此病毒無法系統感染菸草Nicotiana benthamiana。為進一步瞭解E100於病毒系統感染所扮演之角色和參與的寄主因數及機制等,本研究將ORSV野生型感染性選殖株(pORSV-7)之E100突變成A100,並加入一限制酵素切位做為區分之標記,創造出突變株pORSV-7E100A。由感染力測試結果再次證實E100之突變將造成病毒無法在N. benthamiana上系統性移動。我們以生體外蛋白交互作用分析,穿透式電子顯微鏡觀察以及分子篩選層析法(size-exclusion chromatography)證實了E100A是經由影響鞘蛋白間交互作用,導致無法組裝成完整病毒顆粒,此為E100A突變株失去系統性移動的原因之一。而利用農桿菌表現蛋白間交互作用較佳的CPWT,以及蛋白間交互作用較差的CPE100A於植物中時,因CPWT干擾病毒脫鞘能力較佳而具有較好的交叉保護抗性。以ORSV CP專一性之免疫球蛋白G (IgG)將ORSV CP及與其具有交互作用之植物蛋白共沉澱(co-immunoprecipitation, co-IP),並大規模以質譜分析,鑑定出一些可能和ORSV CP有交互作用,並且可能與病毒系統性移動相關之植物蛋白。其中一p26/proteinase inhibitor在蛋白電泳以及質譜分析結果中非常顯著地只和CPE100A緊密結合。顯示p26/proteinase inhibitor可能為ORSV所誘導之植物防禦機制相關蛋白,我們並預測其作用之原理。本研究為植物蛋白p26/proteinase inhibitor與ORSV CP結合並可能干擾病毒系統感染之首次報導,加上大規模鑑定出與CP有交互作用之植物蛋白,將有助於對病毒感染機制以及病毒與寄主間交互作用機制之瞭解,期望因此設計出嶄新的抗病策略。zh_TW
dc.description.abstractThe capsid protein (CP) of tobamoviruses has been demonstrated to involve in virus systemic movement. However, the CP-mediated systemic movement mechanism is unclear. Our previous results indicated that E100 in the CP (CPE100) of Odotoglossum ringspot virus (ORSV) plays an important role in virus long-distance movement in Nicotiana benthamiana plant. In order to study the effect of E100 on CP-mediated function, this amino acid was mutated to A100 in an ORSV infectious clone (pORSV-7) to create a mutant clone (pORSV-7E100A) with a distinguishable RFLP marker. The results indicated that ORSVE100A could be detected in the infected protoplasts and the inoculated leaves of N. benthamiana and Chenopodium quinoa but lost its systemic infectivity in N. benthamiana plant. The data of in vitro protein binding assay, observation through transmission electron microscopy and size-exclusion chromatography (SEC) showed that the CP produced by pORSV-7E100A (CPE100A) might affect the CP-CP interaction and resulted in viral particle assembly deficiency in planta. Moreover, the differential CP-CP interaction ability between CPWT and CPE100A could explain the good protection to ORSV infection by transient-expressing the CPWT in N. benthamiana, whereas poor protection on the CPE100A-expressing plants. ORSV CP-specific IgG was used for immunoprecipitation of the CP to identify the CP-interacting proteins. Here, several putative host proteins were identified to interact with ORSV CP through mass spectrometry analysis. Among them, a defense-related p26/proteinase inhibitor of N. benthamiana was proved to be highly associated with CP by in vitro pull-down assay. This is the first report of plant p26/proteinase inhibitor interacting with ORSV CP and might interfere with virus systemic movement. The viral particle assembly and the ORSV CP-interacting host proteins will help us to understand the virus movement in plant and also the plant-virus interaction.en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:07:37Z (GMT). No. of bitstreams: 1
ntu-100-R98633005-1.pdf: 1574548 bytes, checksum: 65c87a616b0fe70f9353a8588e298b41 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 ........................................................................................................................ I
Abstract ........................................................................................................................ III
Introduction .................................................................................................................... 1
Orchid and ORSV in Taiwan ................................................................................. 1
Tobamoviruses transport in plants ......................................................................... 1
Host components involved in viral movement ...................................................... 2
Previous studies and objectives of this study ......................................................... 4
Materials and Methods ................................................................................................... 5
Virus source and plants .......................................................................................... 5
Sequence analysis of the capsid protein and protein structure prediction ............. 5
Construction of systemic movement defect ORSV clone ...................................... 5
In vitro RNA transcription of ORSV infectious clones ......................................... 6
Preparation of protoplast of N. benthamiana and viral RNA transfection ............. 6
Northern blot analysis ............................................................................................ 8
Plant inoculation .................................................................................................... 8
Plant RNA extraction, RT-PCR, and MscI digestion ............................................. 8
Extraction of plant protein and western blot analysis ............................................ 9
Transmission electron microscopy (TEM) .......................................................... 10
Size-exclusion chromatography (SEC) ................................................................ 10
Expression of recombinant ORSV CP gene and protein purification .................. 11
In vitro protein-protein binding assay (coprecipitation) ...................................... 12
In vitro protein-RNA binding assay ..................................................................... 12
Agrobacterium transient expression .................................................................... 13
Indirect-ELISA .................................................................................................... 13
Far western ........................................................................................................... 14
Co-immunoprecipitation ...................................................................................... 15
Silver staining ...................................................................................................... 16
In-gel digestion .................................................................................................... 16
LC-MS/MS and protein identification ................................................................. 17
Results .......................................................................................................................... 19
The position of the conserved residue E100 in the capsid protein of tobamoviruses
suggests its functional significance ...................................................................... 19
Wild-type and E100 mutant ORSV clones possess the distinguishable molecular
markers ................................................................................................................. 19
The infectivity assay of ORSV in protoplasts and plants of N. benthamiana ..... 20
The cell-to-cell movement was not affected by E100A mutation ........................ 21
Systemic movement defect of ORSVE100A could not be rescued by ORSVWT .... 21
The E100A mutation in ORSV CP impeded viral particle assembly ................... 22
The CPE100A lost the CP-CP interaction ability .................................................... 23
E100A mutation did not interrupt CP-viral RNA interaction in vitro .................. 23
E100A mutation did not interfere with the CPWT-CPWT interaction in vivo ........ 24
Virus-host components interaction ...................................................................... 24
Identification of host proteins involved in ORSV infection ................................ 25
P26/proteinase inhibitor was highly accumulated in CPE100A co-IP products. .... 26
Cloning, sequencing of the p26/proteinase inhibitor ........................................... 27
Discussion .................................................................................................................... 30
Developing the distinguishable ORSVE100A ......................................................... 30
The E100 is important for the CP-CP interaction on particle assembly but not for
CP-RNA interaction ............................................................................................. 30
CP-CP interaction correlated with efficiency of CP-mediated protection ........... 32
Synergistic or antagonistic effects of multiple virus infection ............................ 32
Viral CP-host proteins interaction ........................................................................ 33
The working model for P26/proteinase inhibitor ................................................. 35
Conclusions .......................................................................................................... 36
References .................................................................................................................... 38
Figures .......................................................................................................................... 48
Supplementary information…………………………………………………………..66
dc.language.isoen
dc.title探討齒舌蘭輪斑病毒之系統移動機制以及鑑定出與鞘蛋白具交互作用之寄主蛋白zh_TW
dc.titleStudying the role of capsid protein of Odontoglossum ringspot virus in virus systemic movement and identifying a novel CP- interacting tobacco protein, p26/proteinase inhibitoren
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor林詩舜(Shih-Shun Lin)
dc.contributor.oralexamcommittee葉錫東(Shyi-Dong Yeh),蔡慶修(Ching-Hsiu Tsai),陳逸然(Yet-Ran Chen)
dc.subject.keyword齒舌蘭輪斑病毒,鞘蛋白,系統性移動,病毒顆粒組裝,病毒保護,共免疫沉澱,質譜分析,植物病毒交互作用,zh_TW
dc.subject.keywordOdotoglossum ringspot virus (ORSV),capsid protein,systemic movement,viral particle assemble,virus protection,co-immunoprecipitation,plant-virus interaction,mass spectrometry,proteinase inhibitor,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2011-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved