請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35726完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪ㄧ平 | |
| dc.contributor.author | Ming-Han Hsieh | en |
| dc.contributor.author | 謝明翰 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:06:56Z | - |
| dc.date.available | 2006-08-01 | |
| dc.date.copyright | 2005-08-01 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | [Alvy 78] Alvy Ray Smith, 'Color Gamut Transform Pairs', SIGGRAPH '78
[Ashwin 01] Ashwin, T.V., Jain, N., and Ghosal, S., “Improving image retrieval performance with negative relevance feedback,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Piscataway, NJ, USA, vol. 3, pp. 1637-1640. 2001 [Bezdek 81] Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York. [Bovick 90] A. C. Bovick, M. Clark, and W. S. Geisler, “Multichannel Texture Analysis Using Localized Spatial Filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 1, pp. 55-73, 1990.㎝ [Carson 97] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and J. Malik, “Blobworld: A System for Region-Based Image Indexing and Retrieval.” Proceedings of Visual Information System, Berlin, pp. 509-516, 1997. [Cox 96] I. J. Cox, M. L. Miller, S. M. Omohundro, and P. N. Yianilos,“PicHunter: Bayesian Relevance Feedback for Image Retrieval,” International Conference on Pattern Recognition, pp.361-369, 1996. [Cox 00] Ingemar J. Cox, Matt L. Miller, Thomas P. Minka, Thomas V. Papathomas, and Peter N. Yianilos, “The Bayesian Image Retrieval System, PicHunter: Theory, Implementation, and Psychophysical Experiments,” IEEE Transactions on Image Processing, Vol. 9, No. 1, January 2000. [Daug 88] J.G.Daugman, “Complete Discrete 2D Gabor Transforms by Neural Network for Image Analysis and Compression,” IEEE Transactions Acoustics, Speech, and Signal Processing, Vol. 36, pp. 1169-1179, 1988. [DeGr 88] deGruijter, J.J., McBratney, A.B., A modified fuzzy k means for predictive classification. In: Bock,H.H.(ed) Classification and Related Methods of Data Analysis. pp. 97-104. Elsevier Science, Amsterdam [Feng 04] Feng Jing, MingJing Li, Hong-Jiang Zhang, and Bo Zhang, “An Efficient and Effective Region-Based Image Retrieval Framework,” IEEE Transactions on Image Processing, Vol. 13, No. 5, May 2004 [Flic 95] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by Image and Video Content: The QBIC System, ” IEEE Computer, vol. 28, no. 9, pp.23-32, Sep. 1995. [Fuh 03] D. W. Fuh, 'Region-Based Image Retrieval,' Master Thesis, Department of Computer Science and Information Engineering, National Taiwan University, 2003 [Gabor 46] D.Gabor, “Theory of Communication,” Journal IEE, London, Vol 93,pp. 429-459, 1946. [Gong 94] Y. Gong, H. J. Zhang, H. C. Chuan, and M. Sakauchi, “An image database system with content capturing and fast image indexing abilities,” in Proc. IEEE Int. Conf. Multimedia Computing and Systems, Boston, MA, May 1994, pp.121-130. [Gonz 92] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Addison-Wesley Publishing Company, Inc., 1992. [Ishi 98] Y. Ishikawa, R. Subramanya, and C. Faloutsos, “Mindreader: Query databases through multiple examples,” in Proc. 24th VLDB Conf., New York, 1998 [Kherfi 02] M. L. Kherfi, D. Ziou and A. Bernardi, “Learning from Negative Example in Relevance Feedback for Content-Based Image Retrieval,” International Conference on Pattern Recognition, 2002 [Kull 68] S. Kullback. Information Theory and Statistics. Dover, New York, NY [Leow 01] W. K. Leow and R. Li, “Adaptive binning and dissimilarity measure for image retrieval and classification,” in Proc.IEEE CVPR 2001 [Ma 97] W. Y. Ma and B. S. Manjunath, “NeTra: A Toolbox for Navigating Large Image Databases,” in Proc. IEEE Int. Conf. Image Processing, vol. I, Santa Barbara, CA, Oct. 1997, pp.568-571. [Ma 99] W. Y. Ma and B. S. Manjunath, “NeTra: A Toolbox for Navigating Large Image Databases,” Multimedia Systems, Vol. 7, No. 3, pp.184-198, 1999. [Mac 67] J. B. MacQueen :'Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability', Berkeley, University of California Press, 1:281-297, 1967 [Manj 96] B. S. Manjunath and W. Y. Ma, “Texture Features for Browsing and Retrieval of Image Data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 8, pp. 837--842, 1996. [Mao 92] J. C. Mao and A. K. Jain, “Texture Classification and Segmentation Using Multiresolution Simultaneous Autoregressive Models,” Pattern Recognition, vol. 25, no.2, pp.173-188, 1992 [Minka 97] T. P. Minka and R. W. Picard, “Interactive learning using a society of models,” Pattern Recognit., vol. 30, no. 4, pp. 565-581, Apr. 1997. [Muller 00] H. Muller, W. Muller, D. M. Squire, S. Marchand-Maillet and T. Pun, “Strategies for positive and negative relevance feedback in image retrieval,” International Conference on Pattern Recognition, 2000. [Nastar 98] Nastar C, Mitschke M, and Meihac C, “Efficient Query Refinement for Image Retrieval,” IEEE CVPR. 547-552, Santa Barbara, 1998 [Nuno 00a] Nuno Vasconcelos, Andrew Lippman, “Learning from user feedback in image retrieval,” Advances in Neural Information Processing Systems, 2000. [Nuno 00b] N. Vasconcelos and A. Lippman, “Bayesian Relevance Feedback for Content-Based Image Retrieval,” Proceedings of the IEEE Workshop on Content-based Access of Image and Video Libraries, South Carolina, pp. 63-67, 2000. [Pal 93] N. R. Pal and S. K. Pal, “A Review on Image Segmentation Techniques,” Pattern Recognition, vol. 26, no. 9, pp.1277-1294, Mar.1993 [Palm 00] C.Palm, D.Keysers, T.Lehmann, and K.Spitzer, “Gabor Filtering of Complex Hue/Saturation Image for Color Texture Classification,” Proceeding of, Joint Conference on Information Sciences --- International Conference on Computer Vision, Pattern Recognition, and Image Processing, Atlantic City, NJ, Vol. 2, pp.45-49, 2000. [Rocchio 71] J. J. Rocchio Jr., “Relevance feedback in information retrieval,” in The SMART Retrieval System: Experiments in Automatic Document Processing, G. Salton, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1971, pp. 313-323 [Rubner 98] Yossi Rubner, Carlo Tomasi. Leonidas J. Guibas. The Earth Mover's Distance as a Metric for Image Retrieval. Technical Report STAN-CS-TN-98-86, Department of Computer Science, Stanford University, September 1998 [Rui 97] Y. Rui, T. S. Huang and S. Mehrotra, “Content-Based Image Retrieval with Relevance Feedback in MARS,” Proceedings of International Conference on Image Processing, Washington, DC, Vol. 2, pp. 815-818, 1997. [Sanjiv 04] Sanjiv K. Bhatia: Adaptive K-Means Clustering. FLAIRS Conference 2004 [Smit 96] J. R. Smith and S. F. Chang, “VisualSEEk: a Fully Automated Content-Based Image Query System,” Proceedings of the ACM international conference on Multimedia, pp.87-98, 1996. [Tau 02] J. L. Tau, 'Content-Based Image Retrieval by Image Retrieval by Use of Relevance Feedback,' Master Thesis, Department of Computer Science and Information Engineering, National Taiwan University, 2002. [Vincent 91] L. Vincent, P. Soille: Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Transactions on PAMI. Vol. 13(6) (Jun. 1991) 583-598 [Voss 01] N.Voss and B.Mertsching, “Design and Implementation of an Accelerated Gabor Filter Bank Using Parallel Hardware,” FPL2001, Field Programmable Logic, University of Hamburg, Germany, pp. 251-260, 2001. [Wang 97] D. Wang: A Multiscale Gradient Algorithm for Image Segmentation Using Watersheds. Pattern Recognition. 30(12) (1997) 2043-2052 [Will 98] P. S. Williams and M. D. Alder, “Segmentation of Natural Images for CBIR,” International Conference on Pattern Recognition, vol. 1, pp.486-470,1998 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35726 | - |
| dc.description.abstract | 由於影像的資料庫越來越大,有效的處理大量的資料庫成為一項重要的課題。本篇論文使用了以區域為基礎的影像檢索技術,建立一個影像檢索系統。與一般影像檢索不同的地方在於使用者可以自由的選擇影像中特定的區域,再從資料庫中找到與這個特定區域相似的圖片。由於每張影像還要切割成一些小區域,因此整個資料庫將會建立很多區域的資訊,在此我們提出了一個改良式區域分類技術來幫區域分類,並且利用它把資料庫內相似度太低的影像過濾掉。而剩下那些被認為相似度較高的影像,我們再給他排名找出最相似的影像。另外本篇論文還加入了關聯回饋技術,透過關聯回饋,我們可以清楚地知道使用者所與查詢的概念,進而找出更符合使用者所想要的影像。 | zh_TW |
| dc.description.abstract | With the exponential growth of multi-media data, finding images in a large database has become more difficult. Region-based image retrieval (RBIR) is used for solving this problem in this thesis. There are some differences between RBIR and traditional content-based image retrieval (CBIR) systems. CBIR is focused on the similarity of global images and RBIR is focused on the similarity of the local image regions. We apply the watershed segmentation to segment each image into some regions. To classify these regions, the fuzzy k-means clustering algorithm is time-wasting and uses too much space to store the information about the regions. We propose a modified fuzzy k-means clustering algorithm to classify regions efficiently. In order to accelerate our system, we propose a new method for filtering which can filter out many unsuitable images. The candidate images are ranked based on their similarity measure. After our system retrieves the images, the user is able to give feedback to the system. Based on user’s feedback information, our system will retrieve the images that are even closer to the user’s intent. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:06:56Z (GMT). No. of bitstreams: 1 ntu-94-R92922053-1.pdf: 1608518 bytes, checksum: cb1d6ba68d07adbf748533a753d90155 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Chapter 1 1
Introduction 1 1.1 Content-Based Image Retrieval 1 1.2 Region-Based Image Retrieval 4 1.3 Relevance Feedback 6 1.4 Thesis Organization 7 Chapter 2 8 Background 8 2.1 Watershed Segmentation 9 2.2 Feature Extraction 11 2.2.1 Color Feature 12 2.2.2 Texture Feature 16 2.3 Clustering 18 2.3.1 k-Means Clustering 19 2.3.2 Fuzzy k-Means Clustering 20 2.3.3 Adaptive Clustering 22 2.4 Earth Mover’s Distance 23 Chapter 3 29 The Proposed Method 29 3.1 Image Representation 29 3.1.1 Modified Fuzzy K-means Clustering 31 3.1.2 Indexing and Image Representation 32 3.2 Image Filtering 33 3.3 Image Ranking and Retrieval 34 3.4 Relevance Feedback 36 Chapter 4 39 Experiments 39 4.1 Image Database 39 4.2 Experimental Results 40 Chapter 5 46 Conclusion and Future Work 46 5.1 Conclusion 46 5.2 Future Work 47 | |
| dc.language.iso | en | |
| dc.subject | 影像檢索 | zh_TW |
| dc.subject | 關聯回饋 | zh_TW |
| dc.subject | Image Rterieval | en |
| dc.subject | Relevance Feedback | en |
| dc.subject | Region-Based | en |
| dc.title | 使用關聯回饋從事以區域為基礎的影像檢索 | zh_TW |
| dc.title | Region-Based Image Retrieval by Use of Relevance Feedback | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 傅楸善,陳永昇,唐政元,董建成 | |
| dc.subject.keyword | 關聯回饋,影像檢索, | zh_TW |
| dc.subject.keyword | Region-Based,Image Rterieval,Relevance Feedback, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
