請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35717完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭永銘(Yung-Ming Jeng) | |
| dc.contributor.author | Chih-Ning Chang | en |
| dc.contributor.author | 張至寧 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:06:28Z | - |
| dc.date.available | 2016-10-07 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-22 | |
| dc.identifier.citation | 6. Reference
1. Endicott, J.A. and M.E. Noble, Structural principles in cell-cycle control: beyond the CDKs. Structure, 1998. 6(5): p. 535-41. 2. Nigg, E.A., Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol, 2001. 2(1): p. 21-32. 3. Guacci, V., E. Hogan, and D. Koshland, Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol, 1994. 125(3): p. 517-30. 4. Nurse, P., Universal control mechanism regulating onset of M-phase. Nature, 1990. 344(6266): p. 503-8. 5. Nigg, E.A., Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays, 1995. 17(6): p. 471-80. 6. Morgan, D.O., Principles of CDK regulation. Nature, 1995. 374(6518): p. 131-4. 7. Gong, D. and J.E. Ferrell, Jr., The roles of cyclin A2, B1, and B2 in early and late mitotic events. Mol Biol Cell, 2010. 21(18): p. 3149-61. 8. Hunter, T. and J. Pines, Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell, 1994. 79(4): p. 573-82. 9. Sherr, C.J., Cancer cell cycles. Science, 1996. 274(5293): p. 1672-7. 10. Sherr, C.J., G1 phase progression: cycling on cue. Cell, 1994. 79(4): p. 551-5. 11. Sherr, C.J., Mammalian G1 cyclins. Cell, 1993. 73(6): p. 1059-65. 12. Masaki, T., et al., Cyclins and cyclin-dependent kinases: comparative study of hepatocellular carcinoma versus cirrhosis. Hepatology, 2003. 37(3): p. 534-43. 13. Lee, M.G. and P. Nurse, Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature, 1987. 327(6117): p. 31-5. 14. Enserink, J.M. and R.D. Kolodner, An overview of Cdk1-controlled targets and processes. Cell Div, 2010. 5: p. 11. 15. Schwob, E., et al., The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell, 1994. 79(2): p. 233-44. 16. Alberghina, L., et al., A cell sizer network involving Cln3 and Far1 controls entrance into S phase in the mitotic cycle of budding yeast. J Cell Biol, 2004. 167(3): p. 433-43. 17. Mendenhall, M.D. and A.E. Hodge, Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 1998. 62(4): p. 1191-243. 18. Amon, A., S. Irniger, and K. Nasmyth, Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle. Cell, 1994. 77(7): p. 1037-50. 19. Poon, R.Y., et al., The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J, 1993. 12(8): p. 3123-32. 20. Solomon, M.J., J.W. Harper, and J. Shuttleworth, CAK, the p34cdc2 activating kinase, contains a protein identical or closely related to p40MO15. EMBO J, 1993. 12(8): p. 3133-42. 21. Dunphy, W.G., The decision to enter mitosis. Trends Cell Biol, 1994. 4(6): p. 202-7. 22. Fesquet, D., et al., The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J, 1993. 12(8): p. 3111-21. 23. Russell, P. and P. Nurse, cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell, 1986. 45(1): p. 145-53. 24. Sullivan, M. and D.O. Morgan, Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol, 2007. 8(11): p. 894-903. 25. Blangy, A., et al., Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 1995. 83(7): p. 1159-69. 26. Santamaria, D., et al., Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 2007. 448(7155): p. 811-5. 27. Aleem, E., H. Kiyokawa, and P. Kaldis, Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol, 2005. 7(8): p. 831-6. 28. Smits, V.A. and R.H. Medema, Checking out the G(2)/M transition. Biochim Biophys Acta, 2001. 1519(1-2): p. 1-12. 29. Takizawa, C.G. and D.O. Morgan, Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol, 2000. 12(6): p. 658-65. 30. Moore, J.D., et al., Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol, 1999. 144(2): p. 213-24. 31. Satyanarayana, A., M.B. Hilton, and P. Kaldis, p21 Inhibits Cdk1 in the absence of Cdk2 to maintain the G1/S phase DNA damage checkpoint. Mol Biol Cell, 2008. 19(1): p. 65-77. 32. Mueller, P.R., et al., Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science, 1995. 270(5233): p. 86-90. 33. Donzelli, M. and G.F. Draetta, Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep, 2003. 4(7): p. 671-7. 34. Hu, X. and L.C. Moscinski, Cdc2: a monopotent or pluripotent CDK? Cell Prolif, 2011. 44(3): p. 205-11. 35. Graves, P.R., et al., Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene, 2001. 20(15): p. 1839-51. 36. Kumagai, A. and W.G. Dunphy, Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev, 1999. 13(9): p. 1067-72. 37. Lee, J., A. Kumagai, and W.G. Dunphy, Positive regulation of Wee1 by Chk1 and 14-3-3 proteins. Mol Biol Cell, 2001. 12(3): p. 551-63. 38. Draviam, V.M., et al., The localization of human cyclins B1 and B2 determines CDK1 substrate specificity and neither enzyme requires MEK to disassemble the Golgi apparatus. J Cell Biol, 2001. 152(5): p. 945-58. 39. Sutani, T., et al., Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev, 1999. 13(17): p. 2271-83. 40. Hummer, S. and T.U. Mayer, Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex. Curr Biol, 2009. 19(7): p. 607-12. 41. Ubersax, J.A., et al., Targets of the cyclin-dependent kinase Cdk1. Nature, 2003. 425(6960): p. 859-64. 42. Heo, S.J., K. Tatebayashi, and H. Ikeda, The budding yeast cohesin gene SCC1/MCD1/RHC21 genetically interacts with PKA, CDK and APC. Curr Genet, 1999. 36(6): p. 329-38. 43. Freedman, B.S. and R. Heald, Functional comparison of H1 histones in Xenopus reveals isoform-specific regulation by Cdk1 and RanGTP. Curr Biol, 2010. 20(11): p. 1048-52. 44. Belmont, A.S., Mitotic chromosome scaffold structure: new approaches to an old controversy. Proc Natl Acad Sci U S A, 2002. 99(25): p. 15855-7. 45. Lavoie, B.D., E. Hogan, and D. Koshland, In vivo dissection of the chromosome condensation machinery: reversibility of condensation distinguishes contributions of condensin and cohesin. J Cell Biol, 2002. 156(5): p. 805-15. 46. McCleland, M.L. and P.H. O'Farrell, RNAi of mitotic cyclins in Drosophila uncouples the nuclear and centrosome cycle. Curr Biol, 2008. 18(4): p. 245-54. 47. McCleland, M.L., J.A. Farrell, and P.H. O'Farrell, Influence of cyclin type and dose on mitotic entry and progression in the early Drosophila embryo. J Cell Biol, 2009. 184(5): p. 639-46. 48. Lamb, N.J., et al., Microinjection of p34cdc2 kinase induces marked changes in cell shape, cytoskeletal organization, and chromatin structure in mammalian fibroblasts. Cell, 1990. 60(1): p. 151-65. 49. Ishida, R., et al., Mitotic specific phosphorylation of serine-1212 in human DNA topoisomerase IIalpha. Cell Struct Funct, 2001. 26(4): p. 215-26. 50. Xu, Y.X. and J.L. Manley, The prolyl isomerase Pin1 functions in mitotic chromosome condensation. Mol Cell, 2007. 26(2): p. 287-300. 51. Abe, S., et al., The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev, 2011. 25(8): p. 863-74. 52. Th'ng, J.P., et al., Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation. J Biol Chem, 1994. 269(13): p. 9568-73. 53. Bradbury, E.M., Reversible histone modifications and the chromosome cell cycle. Bioessays, 1992. 14(1): p. 9-16. 54. Guo, X.W., et al., Chromosome condensation induced by fostriecin does not require p34cdc2 kinase activity and histone H1 hyperphosphorylation, but is associated with enhanced histone H2A and H3 phosphorylation. EMBO J, 1995. 14(5): p. 976-85. 55. Langan, T.A., et al., Mammalian growth-associated H1 histone kinase: a homolog of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Mol Cell Biol, 1989. 9(9): p. 3860-8. 56. Gorbsky, G.J., Cell cycle progression and chromosome segregation in mammalian cells cultured in the presence of the topoisomerase II inhibitors ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane; ADR-529] and ICRF-159 (Razoxane). Cancer Res, 1994. 54(4): p. 1042-8. 57. Lever, M.A., et al., Rapid exchange of histone H1.1 on chromatin in living human cells. Nature, 2000. 408(6814): p. 873-6. 58. Misteli, T., et al., Dynamic binding of histone H1 to chromatin in living cells. Nature, 2000. 408(6814): p. 877-81. 59. Fan, Y., et al., Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell, 2005. 123(7): p. 1199-212. 60. Robinson, P.J. and D. Rhodes, Structure of the '30 nm' chromatin fibre: a key role for the linker histone. Curr Opin Struct Biol, 2006. 16(3): p. 336-43. 61. Hill, C.S., et al., Histone-DNA interactions and their modulation by phosphorylation of -Ser-Pro-X-Lys/Arg- motifs. EMBO J, 1991. 10(7): p. 1939-48. 62. Marion, C., et al., Differences in the condensation of chromatin by individual subfractions of histone H1: implications for the role of H1(0) in the structural organization of chromatin. Biochemistry, 1985. 24(23): p. 6328-35. 63. Lennox, R.W. and L.H. Cohen, The production of tissue-specific histone complements during development. Biochem Cell Biol, 1988. 66(6): p. 636-49. 64. George, O., M.A. Johnston, and C.B. Shuster, Aurora B kinase maintains chromatin organization during the MI to MII transition in surf clam oocytes. Cell Cycle, 2006. 5(22): p. 2648-56. 65. Reeves, R., Chromatin changes during the cell cycle. Curr Opin Cell Biol, 1992. 4(3): p. 413-23. 66. Trinkle-Mulcahy, L., et al., Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability. J Cell Biol, 2006. 172(5): p. 679-92. 67. Zhou, L., et al., Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One, 2010. 5(12): p. e15224. 68. Fedorowicz, G., et al., Microarray analysis of RNA extracted from formalin-fixed, paraffin-embedded and matched fresh-frozen ovarian adenocarcinomas. BMC Med Genomics, 2009. 2: p. 23. 69. Vagnarelli, P., et al., Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat Cell Biol, 2006. 8(10): p. 1133-42. 70. Qian, J., et al., PP1/Repo-Man Dephosphorylates Mitotic Histone H3 at T3 and Regulates Chromosomal Aurora B Targeting. Curr Biol, 2011. 71. Peng, A., et al., Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation. Curr Biol, 2010. 20(5): p. 387-96. 72. Shima, H., et al., Identification of PP1 catalytic subunit isotypes PP1 gamma 1, PP1 delta and PP1 alpha in various rat tissues. Biochem Biophys Res Commun, 1993. 192(3): p. 1289-96. 73. Alessi, D.R., et al., Inhibitor-2 functions like a chaperone to fold three expressed isoforms of mammalian protein phosphatase-1 into a conformation with the specificity and regulatory properties of the native enzyme. Eur J Biochem, 1993. 213(3): p. 1055-66. 74. Nowak, S.J., C.Y. Pai, and V.G. Corces, Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster. Mol Cell Biol, 2003. 23(17): p. 6129-38. 75. Chowdhury, D., et al., gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell, 2005. 20(5): p. 801-9. 76. Nakada, S., et al., PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep, 2008. 9(10): p. 1019-26. 77. Paulson, J.R., J.S. Patzlaff, and A.J. Vallis, Evidence that the endogenous histone H1 phosphatase in HeLa mitotic chromosomes is protein phosphatase 1, not protein phosphatase 2A. J Cell Sci, 1996. 109 ( Pt 6): p. 1437-47. 78. Hsu, J.Y., et al., Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell, 2000. 102(3): p. 279-91. 79. Ceulemans, H., W. Stalmans, and M. Bollen, Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. Bioessays, 2002. 24(4): p. 371-81. 80. Trinkle-Mulcahy, L. and A.I. Lamond, Mitotic phosphatases: no longer silent partners. Curr Opin Cell Biol, 2006. 18(6): p. 623-31. 81. Shimada, M., et al., Protein phosphatase 1gamma is responsible for dephosphorylation of histone H3 at Thr 11 after DNA damage. EMBO Rep, 2010. 11(11): p. 883-9. 82. Oppedisano-Wells, L. and S. Varmuza, Protein phosphatase 1cgamma is required in germ cells in murine testis. Mol Reprod Dev, 2003. 65(2): p. 157-66. 83. Varmuza, S. and L. Ling, Increased recombination frequency showing evidence of loss of interference is associated with abnormal testicular histopathology. Mol Reprod Dev, 2003. 64(4): p. 499-506. 84. Forgione, N., A.W. Vogl, and S. Varmuza, Loss of protein phosphatase 1c{gamma} (PPP1CC) leads to impaired spermatogenesis associated with defects in chromatin condensation and acrosome development: an ultrastructural analysis. Reproduction, 2010. 139(6): p. 1021-9. 85. Nigg, E.A., Cellular substrates of p34(cdc2) and its companion cyclin-dependent kinases. Trends Cell Biol, 1993. 3(9): p. 296-301. 86. Trinkle-Mulcahy, L., et al., Time-lapse imaging reveals dynamic relocalization of PP1gamma throughout the mammalian cell cycle. Mol Biol Cell, 2003. 14(1): p. 107-17. 87. Neurohr, G. and D.W. Gerlich, Assays for mitotic chromosome condensation in live yeast and mammalian cells. Chromosome Res, 2009. 17(2): p. 145-54. 88. Hirano, T., At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol, 2006. 7(5): p. 311-22. 89. Hudson, D.F., K.M. Marshall, and W.C. Earnshaw, Condensin: Architect of mitotic chromosomes. Chromosome Res, 2009. 17(2): p. 131-44. 90. Meyer, H., A. Drozdowska, and G. Dobrynin, A role for Cdc48/p97 and Aurora B in controlling chromatin condensation during exit from mitosis. Biochem Cell Biol, 2010. 88(1): p. 23-8. 91. John, P.C., M. Mews, and R. Moore, Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. Protoplasma, 2001. 216(3-4): p. 119-42. 92. Lipp, J.J., et al., Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J Cell Sci, 2007. 120(Pt 7): p. 1245-55. 93. Song, M.K. and K.W. Adolph, Phosphorylation of nonhistone proteins during the HeLa cell cycle. Relationship to DNA synthesis and mitotic chromosome condensation. J Biol Chem, 1983. 258(5): p. 3309-18. 94. Kimura, K., et al., Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science, 1998. 282(5388): p. 487-90. 95. Dawson, M.A., et al., JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature, 2009. 461(7265): p. 819-22. 96. Rea, S., et al., Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 2000. 406(6796): p. 593-9. 97. Garcia, B.A., et al., Modifications of human histone H3 variants during mitosis. Biochemistry, 2005. 44(39): p. 13202-13. 98. Hendzel, M.J., et al., Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma, 1997. 106(6): p. 348-60. 99. Goto, H., et al., Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem, 1999. 274(36): p. 25543-9. 100. Preuss, U., G. Landsberg, and K.H. Scheidtmann, Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res, 2003. 31(3): p. 878-85. 101. Dai, J., et al., The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev, 2005. 19(4): p. 472-88. 102. Wang, F., et al., Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science, 2010. 330(6001): p. 231-5. 103. Varier, R.A., et al., A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes. EMBO J, 2010. 29(23): p. 3967-78. 104. Dai, J. and J.M. Higgins, Haspin: a mitotic histone kinase required for metaphase chromosome alignment. Cell Cycle, 2005. 4(5): p. 665-8. 105. Metzger, E., et al., Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol, 2008. 10(1): p. 53-60. 106. Sugiyama, K., et al., Aurora-B associated protein phosphatases as negative regulators of kinase activation. Oncogene, 2002. 21(20): p. 3103-11. 107. Sauve, D.M., et al., Phosphorylation-induced rearrangement of the histone H3 NH2-terminal domain during mitotic chromosome condensation. J Cell Biol, 1999. 145(2): p. 225-35. 108. Van Hooser, A., et al., Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J Cell Sci, 1998. 111 ( Pt 23): p. 3497-506. 109. Tsukahara, T., Y. Tanno, and Y. Watanabe, Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature, 2010. 467(7316): p. 719-23. 110. Bui, H.T., E. Yamaoka, and T. Miyano, Involvement of histone H3 (Ser10) phosphorylation in chromosome condensation without Cdc2 kinase and mitogen-activated protein kinase activation in pig oocytes. Biol Reprod, 2004. 70(6): p. 1843-51. 111. Whyte, J., et al., Phosphorylation regulates targeting of cytoplasmic dynein to kinetochores during mitosis. J Cell Biol, 2008. 183(5): p. 819-34. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35717 | - |
| dc.description.abstract | Cdk1在細胞週期和染色體濃縮中扮演一個重要的角色,然而其機制仍尚未明瞭。經由DNA微陣列的分析,我們發現Repo-Man過度表現在肝細胞癌中。先前研究指出Repo-Man是1號γ型蛋白去磷酸酶 (PP1γ)的結合伴侶,會在細胞分裂時調控染色體濃縮,但其功能如何調控目前尚未明瞭。 在本篇論文中,我們發現在細胞分裂早期Repo-Man會被Cdk1磷酸化。喪失磷酸化機能的突變型Repo-Man會在細胞分裂的前期和中期提前轉位至染色體上,抑制染色體濃縮。染色體濃縮遭到抑制會在細胞分裂後期和末期造成染色體橋,以及在細胞分裂結束後產生微細胞核。磷酸化的Repo-Man會於細胞分裂後期招攬PP1γ至染色體上。而突變形的Repo-Man 會於細胞分裂前期與中期提前招攬PP1γ至染色體,造成組蛋白H3 (Histone H3)於3號羥丁氨酸過早去磷酸化。我們的研究結果顯示Cdk1磷酸化的Repo-Man會於細胞分裂早期將Repo-Man-PP1γ複合體排除於染色體外,使得Histone H3 於3號羥丁氨酸可被磷酸化,進而導致細胞分裂早期的染色體濃縮。 | zh_TW |
| dc.description.abstract | Cyclin-dependent kinase 1 (Cdk1) is a key player in cell cycle regulation, yet the mechanism of regulating chromosome condensation is not fully known. Using microarray analysis, we found Repo-Man is a gene overexpressed in hepatocellular carcinoma. Repo-Man is originally identified as a binding partner for protein phosphatase 1γ. A previous study found Repo-Man is implicated in regulation of chromosome condensation during mitosis, but the mechanism is still unknown. We propose a novel finding that Repo-Man is phosphorylated by Cdk1 in early mitosis. Phosphorylation null Repo-Man prematurely translocates to chromosomes in prophase and metaphase and inhibits chromosome condensation. The inhibition of chromosome condensation results in chromosomal bridging in anaphase and telophase and micronuclei formation after mitosis. Phosphorylated Repo-Man recruits protein phosphatase 1γ (PP1γ) onto chromosome at the onset of anaphase. Phosphorylation null Repo-Man prematurely recruits PP1γ onto chromatin in prophase and metaphase, leading to premature dephosphorylation of Histone H3 Thr3. The data indicate that Cdk1 phosphorylates Repo-Man to exclude the binding of Repo-Man-PP1γ complex on chromosome in early mitosis and induces full phosphorylation of Histone H3 Thr3 to induce chromosome condensation in early mitosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:06:28Z (GMT). No. of bitstreams: 1 ntu-100-R98444005-1.pdf: 2056478 bytes, checksum: b3f55b0a56d8cca3ed38fd8fba689011 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Contents
PAGE 口試委員審定書: II 致謝: III 中文摘要: IV ABSTRACT: V CONTENTS VI 1. INTRODUCTION 1 1.1 CYCLIN-DEPENDENT KINASES (CDKS) 1 1.2 CYCLIN-DEPENDENT KINASE 1 (CDK1) 2 1.3 REGULATION OF CHROMOSOME CONDENSATION BY CDK1 6 1.4 THE FUNCTION OF REPO-MAN 9 1.5 THE FUNCTION OF PP1Γ 12 1.6 PURPOSES OF STUDY 14 2. MATERIALS AND METHODS 15 2.1 CELL CULTURE 15 2.2 CONSTRUCTION OF REPO-MAN AND PP1Γ PLASMID 15 2.3 MUTAGENESIS 16 2.4 CELL CYCLE SYNCHRONIZATION 16 2.5 IMMUNOPRECIPITATION 17 2.6 WESTERN BLOT 18 2.7 IN VITRO KINASE ASSAY 19 2.8 TRANSFECTION AND VIRAL INFECTION 20 2.9 IMMUNOFLUROESCENT STAINING 20 2.10 CHROMOSOME SPREADING ANALYSIS 22 2.11 RNAI KNOCKDOWN OF REPO-MAN 22 2.12 RT-PCR 23 3. RESULTS 24 3.1 REPO-MAN IS OVEREXPRESSED IN HEPATOCELLULAR CARCINOMA 24 3.2 REPO-MAN IS PHOSPHORYLATED AT G2/M 25 3.3 THE SUBCELLULAR LOCALIZATION OF REPO-MAN CHANGES THROUGHOUT CELL CYCLE 26 3.4 REPO-MAN IS BINDING TO AND PHOSPHORYLATED BY CDK1 26 3.5 THE SUBCELLULAR LOCATION OF REPO-MAN WITH CDK1 INHIBITOR TREATMENT 28 3.6 SUBCELLULAR LOCALIZATION OF REPO-MAN PHOSPHORYLATION NULL MUTANT 28 3.7 PHOSPHORYLATION NULL MUTANT REPO-MAN INDUCES FAILURE OF CONDENSATION OF CHROMOSOME AND MICRONUCLEI FORMATION 30 3.8 THE SUBCELLULAR LOCATION OF PHOSPHO-HISTONE H3 AT THR3 31 3.9 PHOSPHORYLATION OF HISTONE H3 AT THR3 IN CELLS WITH REPO-MAN KNOCKDOWN 32 4. DISCUSSION 33 4.1 OVEREXPRESSION OF REPO-MAN IN SEVERAL TYPES OF CANCERS 33 4.2 PHOSPHORYLATION OF REPO-MAN IS REGULATED BY CDK1 IN G2/M 34 4.3 THE SUBCELLULAR LOCALIZATION OF REPO-MAN REGULATED BY CDK1 35 4.4 CHROMOSOME CONDENSATION REGULATED BY REPO-MAN 37 4.5 CONCLUSION 43 5. TABLES AND FIGURES 45 TABLE 1. PRIMERS USED IN THIS STUDY 45 FIGURE 1. REPO-MAN IS PHOSPHORYLATED IN G2/M PHASE DURING THE CELL CYCLE 46 FIGURE 2. SUBCELLULAR LOCALIZATION OF REPO-MAN THROUGHOUT CELL CYCLE 47 FIGURE 3. REPO-MAN BINDS TO AND IS PHOSPHORYLATED BY CDK1. 48 FIGURE 4. SUBCELLULAR LOCALIZATION OF EGFP-REPO-MAN IN ROSCOVITINE TREATED HELA CELLS. 49 FIGURE 5. MUTATION SITE OF NULL MUTANT AND SUBCELLULAR LOCALIZATION OF REPO-MAN 51 FIGURE 6. THE CHROMOSOME SPREADING ANALYSIS OF WILDTYPE AND NULL MUTANT OF REPO-MAN TRANSDUCED HELA CELLS 52 FIGURE 7. MICRONUCLEI WERE INCREASED IN NULL MUTANT REPO-MAN TRANSDUCED CELLS AFTER MITOSIS. 53 FIGURE 8. PHOSPHORYLATION OF HISTONE H3 THR3 AT MITOSIS 55 FIGURE 9. PHOSPHORYLATION OF HISTONE H3 THR3 IN REPO-MAN KNOCKED DOWN HELA CELLS 57 FIGURE 10. SUBCELLULAR LOCALIZATION AND MOLECULAR MECHANISM OF REPO-MAN IN CELL CYCLE 60 6. REFERENCE 61 | |
| dc.language.iso | en | |
| dc.subject | 染色體濃縮 | zh_TW |
| dc.subject | Cdk1 | zh_TW |
| dc.subject | Repo-Man | zh_TW |
| dc.subject | PP1γ | zh_TW |
| dc.subject | 細胞分裂 | zh_TW |
| dc.subject | Repo-Man | en |
| dc.subject | Cdk1 | en |
| dc.subject | chromosome condensation | en |
| dc.subject | mitosis | en |
| dc.subject | PP1γ | en |
| dc.title | 細胞分裂中Cdk1對Repo-Man磷酸化對染色體濃縮的影響 | zh_TW |
| dc.title | Phosphorylation of Repo-Man by Cdk1 Regulates Chromosome Condensation in Mitosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 譚賢明(Bertrand Tan),周涵怡(Han-Yi Chou),張亨? | |
| dc.subject.keyword | Cdk1,Repo-Man,PP1γ,細胞分裂,染色體濃縮, | zh_TW |
| dc.subject.keyword | Cdk1,Repo-Man,PP1γ,mitosis,chromosome condensation, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 病理學研究所 | zh_TW |
| 顯示於系所單位: | 病理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
