請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35706完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉志文 | |
| dc.contributor.author | Sheng-Min Huang | en |
| dc.contributor.author | 黃聖閔 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:05:53Z | - |
| dc.date.available | 2011-07-27 | |
| dc.date.copyright | 2011-07-27 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-22 | |
| dc.identifier.citation | [1] Gyugyi, “Reactive Power Generator and Control by Thyristor Circuit” IEEE Trans. on Industry Applications , vol. IA-15,no.5, pp.521-531, 1979
[2] C. Schauder and H. Mehta, “Vector Analysis and Control of Advanced Static VAR Compensators,” Pro. Inst. Eletr .Eng –C, vol.140, no.4, pp.299-306.1993 [3] P. Werbos, “Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences,” Ph.D. dissertation, Harvard Univ., Cambridge, MA, 1974. [4] P. Werbos, The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting. New York: Wiley, 1994, 0-471-59897-6. [5] B. Widrow, N. Gupta, and S. Mitra, “Punish/reward: Learning with a critic in adaptive threshold systems,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 5, pp. 455–465, 1973. [6] P. J.Werbos, “Amenu of designs for reinforcement learning over time,” in Neural Networks for Control. Cambridge, MA: MIT Press, 1990, pp. 67–95. [7] “New directions in ACDs: Keys to intelligent control and understandingthe brain,” in Proc. IEEE-INNS-ENNS, Jul. 24–27, 2000, vol.3, pp. 61–66. [8] D. V. Prokhorov and D. C.Wunsch, II, “Adaptive critic designs,” IEEE Trans. Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep 1997. [9] M. Tsili, Ch. Papathanassiou, “Grid Code Requirements for Large Wind Farms :A Review of Technical Regulations and Available Wind Turbine Technologies”, School of Electrical and Computer Engineering, National Technical University of Athens (NTUA) [10] 「台灣電力股份有限公司再生能源發電系統倂聯要點」,2009。 [11] P.Kundur, “Power Systems Stability and Control,”EPRI, McGraw-Hill, ISBN 0-7803-3463-9, 1993. [12] H. Saadat, “Power System Analysis,” 2nd , International Edition, 2002. [13] M.Lahtinen and R.Hirvonen “Transient and Dynamic Stability on Wind Farms,” Master’s thesis, March, 3rd 2003. [14] P.M. Anderson and A.A. Fouad , “Power System Control and Stability,”2nd Edition, IEEE Series on Power Engineering, October 2002. [15] Narain G. Hingorani and L. Gyugyi “Understanding FACTS : Concepts and Technology of Flexible AC Transmission System” , IEEE Press, 2000. [16] L. Gyugyi, “Power Electronics in Electric Utilities : Static Var Compensators” Proceedings of IEEE, vol.76, no.4, pp.483-494,April 1998. [17] C. Schauder, H. Mehta, “Vector Analysis and Control of Advanced Static VAR Compensators,” IEE Proceedings, Vol. 140, No. 4, July 1993. [18] E. Barrera C.; L. E. Ugalde C. and O. Ramos B. “Design of a Digital Control System for a PWM Based STATCOM,” Electrical Power & Energy Conference (EPEC), 2009 IEEE Digital Object Identifier: 10.1109/EPEC.2009.5420376 Publication Year: 2009, Page(s): 1 – 6 [19] K.J. Astrom and B. Wittenmark, “Computer-Controlled Systems Theory and Design,”Prentice Hall, 1997 [20] Zhou Linyuan, Liu Jinjun, and Liu Fangcheng “Low Voltage Ride-through of Wind Farms Using STATCOM Combined with Series Dynamic Breaking Resistor,”2010 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems. [21] S. Mohagheghi ,G.K.Venayagamoorthy and Ronald G. Harley “Adaptive Critic Design Based Neuro-Fuzzy Controller for a Static Compensator in a Multimachine Power System,”Power Engineering Society General Meeting, 2007. IEEE , Year: 2007 [22] 林俊良,“智慧型控制:分析與設計”全華圖書股份有限公司 [23] Dash, P.K.; Panda, S.K.; Lee, T.H.; Xu, J.X.; Routray, A. “Fuzzy and neural controllers for dynamic systems: an overview ,” Power Electronics and Drive Systems, 1997. Proceedings., 1997 International Conference on Volume: 2 Publication Year: 1997 , Page(s): 810 - 816 vol.2 [24] Mohagheghi, S. Venayagamoorthy, G.K.; Harley, R.G.; “Adaptive Critic Design Based Neuro-Fuzzy Controller for a Static Compensator in a Multimachine Power System ” Power Engineering Society General Meeting, 2007. Publication Year: 2007, Page(s): 1 [25] 塗家祥,“模糊神經網路之自評自調學習法”,碩士論文,國立台灣大學電機工程研究所,2006 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35706 | - |
| dc.description.abstract | 由於全球溫室效應、節能減碳需求以及石化能源價格不斷上漲,因此將來分散式再生能源勢必逐漸普遍化,而系統將面臨電源調度、系統衝擊及穩定性問題。本篇論文將專注於利用靜態同步補償器與動態啟斷電阻、電感三者的結合,幫助微電網系統在LVRT(Low Voltage Ride Through) 上的能力提升,同時使同步發電機能夠在低電壓情況下,增加短期間內的穿越能力,並且加強系統恢復期間的穩定度。
考慮微電網再生能源供應不穩定而導致系統的時變變化,本論文中採用模糊神經網路(Neural-Fuzzy)線上學習(on-line learning)的方式,將套用至STATCOM的控制器,以達成適應性以及非線性控制的效果,使其在各種情況下能有更穩且更快的控制輸出結果。 本研究以MATLAB/Simulink套裝軟件作為模擬平台,以驗證模糊神經網路控制的可行性以及觀察對LVRT性能上的提升效果。 | zh_TW |
| dc.description.abstract | Because of global warming ,carbon reduction requirements and the increasing price of fossil energy, renewable energy will become gradually generalization that power system will face scheduling, system impact and stability problems. This paper focuses on the use of STATCOM, series dynamic break resistance and series dynamic break inductance combination those technologies to enhance micro-grid LVRT capacity. Synchronous generator can also make low-voltage conditions, an increase in tolerance within a short period of service capabilities, and improve the system stability during the recovery period.
Taking into account the instability of micro-grid due to intermittence of renewable energy supply, in all cases to have more stable and faster control output ,this thesis utilizes fuzzy neural networks online learning approach to control STATCOM, aiming at achieving the effective ,adaptive and nonlinear control. In this study, MATLAB / Simulink software package as a simulation platform to validate the feasibility of fuzzy neural networks control, and to observe LVRT performance improvement results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:05:53Z (GMT). No. of bitstreams: 1 ntu-100-R98921066-1.pdf: 1419969 bytes, checksum: 207d5fb9f79df507f4a81194429d4ebe (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………… ii
誌謝………………………………………………………………… iii 中文摘要…………………………………………………………… iv 英文摘要…………………………………………………………… v 目錄………………………………………………………………… vi 圖目錄……………………………………………………………… viii 表目錄……………………………………………………………… x 第一章 緒論……………………………………………………… 1 1.1 研究背景…………………………………………………… 1 1.2 研究動機…………………………………………………… 1 1.3 研究回顧…………………………………………………… 3 1.4 研究內容…………………………………………………… 3 第二章 低電壓穿越(LVRT)技術需求………………………… 5 2.1 前言………………………………………………………… 5 2.2 低電壓穿越(LVRT)的規範………………………………… 5 2.3 虛功電流補償之規範……………………………………… 11 2.4 電力系統穩定度…………………………………………… 12 2.5 系統穩定度分析與原理…………………………………… 13 2.5.1 搖擺方程式……………………………………………… 15 第三章 STATCOM的數學模型與原理…………………………… 18 3.1 前言………………………………………………………… 18 3.2 虛功補償之目的…………………………………………… 18 3.3 虛功補償器的比較………………………………………… 23 3.4 STATCOM的工作原理……………………………………… 24 3.5 Park’s 轉換……………………………………………… 25 3.6 STATCOM的數學模型……………………………………… 27 3.7 STATCOM 與 SDBR對低電壓穿越的提升………………… 30 第四章 STATCOM智慧型控制設計……………………………… 33 4.1 前言………………………………………………………… 33 4.2 智慧型控制之概述………………………………………… 33 4.3 各種智慧型控制結構……………………………………… 35 4.4 適應性評估 (Adaptive Critic) 設計………………… 40 4.5 雙啟發式規劃(DHP)……………………………………… 42 4.5.1 訓練迴路算式…………………………………………… 44 4.6 模糊神經推論系統………………………………………… 46 4.6.1 模糊推論系統於雙啟發市規劃的逆向傳遞設計……… 49 4.7 雙啟發規劃對模糊推論系統的?數修正………………… 51 4.8 獲取賈克比矩陣…………………………………………… 52 4.9 STATCOM的控制設計……………………………………… 53 4.9.1 控制信號的選擇………………………………………… 53 4.9.2 低電壓偵測設計………………………………………… 57 第五章 模擬結果與分析………………………………………… 59 5.1 前言………………………………………………………… 59 5.2 微電網結構………………………………………………… 59 5.3 低電壓穿越模擬與分析…………………………………… 62 5.4 模式切換之模擬與分析…………………………………… 66 第六章 貢獻與未來展望………………………………………… 71 6.1 論文貢獻…………………………………………………… 71 6.2 未來研究目標……………………………………………… 71 參考文獻…………………………………………………………… 73 圖目錄 圖 2-1 德國低電壓穿越曲線圖………………………………………………………………..6 圖 2-2 美國低電壓穿越曲線圖………………………………………………….……………..7 圖 2-3 英國低電壓穿越曲線圖………………………………………………….……………..8 圖 2-4 加拿大低電壓穿越曲線圖……………………………………………….……………..9 圖 2-5 西班牙低電壓穿越曲線圖……………………………………………….……………..9 圖 2-6 德國與西班牙電網法規,電壓受干擾期間虛功電流輸出量特性…………………..11 圖 2-7 電力系統穩定度分類…………………………………………………………………..14 圖 2-8 單機接至無限匯流排之電路模型……………………………………….…………….16 圖 2-9 等面積電力曲線圖……………………………………………………………………..17 圖 3-1 雙機單線電路模型……………………………………………………….…………….19 圖 3-2 雙機單線電路模型之相量圖…………………………………………………………..19 圖 3-3 須供補償與否之電力曲線比較…………………………………………………….….20 圖 3-4 未加入虛功補償器的PV曲線圖……………………………………….……………..20 圖 3-5 加入虛功補償器的PV曲線圖…………………………………………………..……..21 圖 3-6 有無須供補償比較之電力曲線………………………………………………………..21 圖 3-7 有無阻尼之機械角、實功率震盪情形……………………………………………..…22 圖 3-8 TSC與TCR之拓樸結構……………………………………………….……………...23 圖 3-9 靜態同步補償器(STATCOM)示意圖………………………………………………....24 圖 3-10 STATCOM等效電路之Park’s轉換………………………………………………..…27 圖 3-11 含STATCOM與SDBR補償之簡易電網結構……………………………………..…30 圖 3-12 有無須供補償之電流與電壓相量圖…………………………………………………..31 圖 3-13 SDBR電壓補償向量圖………………………………………………….……………..32 圖 4-1 監督式控制………………………………………………………………………….….36 圖 4-2 直接反轉控制…………………………………………………………………………..36 圖 4-3 模型參考控制…………………………………………………………………………..37 圖 4-4 內部模型控制…………………………………………………………………………..37 圖 4-5 預測控制………………………………………………………………………………..38 圖 4-6 增益規劃……………………………………………………………………………......38 圖 4-7 模糊比例-積分控制……………………………………………………………..……...39 圖 4-8 階層式模糊控制………………………………………………………………….…….39 圖 4-9 DHP信號流向示意圖………………………………………………………………..…43 圖 4-10 模糊神經推論系統之結構……………………………………………………………..47 圖 4-11 DHP演算法所設計的STATCOM控制架構……………………………………….…54 圖 4-12 控制器結構示意圖……………………………………………………….…………….55 圖4-13 Matlab/SIMLINK®所搭建之DHP演算示意圖……………………………………….57 圖5-1 本論文所採用微電網架構……………………………………………………………..59 圖5-2 Matlab/SIMLINK®軟體所搭建的微電網結構……………………………………..…61 圖5-3 LVRT測試下市電端電壓之變化……………………………………………………...62 圖5-4 LVRT測試下各種方法下發電機轉子轉速的穩定情況……………………………...63 圖5-5 LVRT測試下同步發電機之輸出功率比較圖………………………………………...64 圖5-6 LVRT測試下發電機端電壓……………………………………………. …………….64 圖5-7 LVRT測試下STATCOM之變流器直流側電壓……………………………………...64 圖5-8 LVRT測試下STATCOM所輸出的q軸成分電流…………………………………...65 圖5-9 LVRT測試下DHP演算法之評估器輸出λ(t)……………………………………..…65 圖5-10 模式變化測試下各種方法下的比較圖……………………………………………..…67 圖5-11 模式變化測試下無電壓控制模式下的發電機轉子轉速變化……………………..…68 圖5-12 模式變化測試下STATCOM q軸成分之變化……………………….……………..68 圖5-13 模式變化測試下發電機端頻率之變化圖…………………………………………..…69 圖5-14 模式變化測試下STATCOM之變流器直流側電壓………………………………..…69 圖5-15 模式變化測試下串聯動態電阻之跨壓……………………………………………..…69 圖5-16 模式變化測試下DHP演算法之評估器輸出λ(t)…………………………………..…70 表目錄 表 2-1 各國家低電壓穿越之比較結果……………………………………………….………...10 表 4-1 模糊邏輯系統與類神經網路的優缺點………………………………….. …………….40 表 5-1 微電網中各裝置之參數………………………………………………….. …………….60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 串聯動態啟斷電阻 | zh_TW |
| dc.subject | 微電網 | zh_TW |
| dc.subject | 低電壓穿越 | zh_TW |
| dc.subject | 模糊神經網路 | zh_TW |
| dc.subject | 雙啟發式動態規劃法 | zh_TW |
| dc.subject | low voltage ride through | en |
| dc.subject | series dynamic breaking resistor (SDBR) | en |
| dc.subject | DHP algorithm | en |
| dc.subject | fuzzy neural networks | en |
| dc.subject | micro-grid | en |
| dc.title | 智慧型控制演算法用於STATCOM對低電壓穿越能力上的提升 | zh_TW |
| dc.title | Improve Capability of LVRT by STATCOM with Intelligent Control | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧展南,黃世杰,張文恭,朱家齊 | |
| dc.subject.keyword | 微電網,低電壓穿越,模糊神經網路,雙啟發式動態規劃法,串聯動態啟斷電阻, | zh_TW |
| dc.subject.keyword | micro-grid,low voltage ride through,fuzzy neural networks,DHP algorithm,series dynamic breaking resistor (SDBR), | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
