請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35676
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉瑞芬 | |
dc.contributor.author | Hui-Ling Tsai | en |
dc.contributor.author | 蔡惠玲 | zh_TW |
dc.date.accessioned | 2021-06-13T07:04:22Z | - |
dc.date.available | 2006-08-01 | |
dc.date.copyright | 2005-08-01 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-26 | |
dc.identifier.citation | 安寶貞。1995。檬果炭疽病之有性世代與溫度、光照對其形成之影響。植病會刊4: 173-179。
安寶貞、陳茂發、黃瑞卿。1994。環境因子對檬果果實炭疽病發生之影響。植病會刊3: 34-44。 安寶貞、呂理燊、莊再揚、高清文。1996。檬果果實炭疽病預先偵測技術之開發。植保會刊38: 376-377。(摘要)。 呂理燊、莊再揚、安寶貞、楊秀珠、楊宏仁、高清文。1996。檬果果實炭疽病之田間非農藥防治。植保會刊38: 377。(摘要)。 林志祥、陳弘毅、陳素琴。2002。國產鮮果外銷檢疫處理技術開發概況。農政與農情5: 38-44。 孫守恭。1992。檬果炭疽病。台灣果樹病害。世維出版社。台中市。412-415頁。 翁豐嶽、莊再揚。1995。臺灣芒果炭疽病菌之分群。植保會刊37: 295-309。 陳敏祥。1991。台灣檬果之栽培概況與展望。台灣果樹生產及研究發展研討會專刊317-322頁。 楊宏仁、莊再揚。1996。營養對香蕉炭疽病菌壓器形成及潛伏感染之影響。植保會刊38: 247-259。 楊秀珠。1998。炭疽病菌之鑑定。檢疫防疫植物病原真菌鑑定研討會專刊199-232頁。 楊秀珠、呂理燊。1998。檬果炭疽病菌之形態及生理性質。植保會刊 30: 325-336。 楊致福。1995。芒果之起源品種繁殖栽培及管理。中國園藝58: 74-89。 蔡致謨。1961。檬果病蟲害之研究。植保會刊 3: 9-17。 蔡雲鵬。1991。台灣植物病害名彙。中華民國植物保護學會、中華民國植物病理會刊印。台中。604頁。 Abang, M. M., Winter, S., Green, K. R., Hoffmann, P., Mignouna, H. D., and Wolf, G. A. 2002. Molecular identification of Colletotrichum gloeosporioides causing yam anthracnose in Nigeria. Plant Pathol. 51: 63-71. Adaskaveg, J. E., and Hartin, R. J. 1997. Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology 87: 979-987. Afanador-Kafuri, L., Minz, D., Maymon, M., and Freeman, S. 2003. Characterization of Colletotrichum isolates from tamarillo, passiflora, and mango in Colombia and identification of a unique species from the genus. Phytopathology 93: 579-587. Alahakoon, P. W., Sreenivasaprasad, S., Brown, A. E., and Mills, P. R. 1992. Selection of genetic variant within Colletotrichum gloeosporioides isolates pathogenic on mango by passaging through wounded tomato fruits. Physiol. Mol. Plant Pathol. 41: 227-240. Arauz, L. F. 2000. Mango anthracnose: economic impact and current options for integrated management. Plant Dis. 84: 600-611. Arx, J. A. 1957. Die arten der gattung Colletotrichum. Phytopathology 29: 413-468. Bailey, J. A., Nash, C., Morgan, L. W., O'Connell, R. J., and Tebeest, D. O. 1996. Molecular taxonomy of Colletotrichum species causing anthracnose on the Malvaceae. Phytopathology 86: 1076-1083. Balardin, R. S., Jarosz, A. M., and Kelly, J. D. 1997. Virulence and molecular diversity in Colletotrichum lindemuthianum form South, Central, and North America. Phytopathology 87: 1184-1191. Bernstein, B., Zehr, E. I., Dean, R. A., and Shabi, E. 1995. Characteristics of Colletotrichum from peach, apple, pecan, and other hosts. Plant Dis. 79: 478-482. Biggs, A. R. 1995. Detection of latent infections in apple fruit with paraquat. Plant Dis. 79: 1062-1067. Braithwaite, K. S., Lrwin, A. G., and Manners, J. M. 1990. Restriction fragment length polymorphisms in Colletotrichum gloeospoioides infecting Stylosanthes spp. in Australia. Mycol. Res. 94: 1129-1137. Brown, A. E., and Swinburne, T. R. 1981. Influence of iron and iron chelators on formation of progressive lessions by Colletotrichum musae on banana fruits. Trans. Br. Mycol. Soc. 77: 119-124. Brown, A. E., and Swinburne, T. R. 1981. Effects of regular applications of benomyl on the population of Colletotrichum in mango leaves. Trans. Br. Mycol. Soc. 77: 529-533. Brown, A. E., Sreenivasaprasad, S., and Timmer, L. W. 1986. Molecular characterization of slow-growing orange and key lime anthracnose strains of Colletotrichum from citrus as C. acutatum. Phytopathology 86: 523-527. Cano, J., Guarro, J., and Gene, J. 2004. Molecular and morphological identification of Colletotrichum species of clinical interest. J. Clin. Microbiol. 42: 2450-2454. Cervera, M. T., Remington, D., Frigerio, J. M., Storme, V., Ivens, B., Boerjan, W., and Plomion, C. 2000. Improved AFLP analysis of tree species. Can. J. Forest. Res. 30: 1608-1616. Chen, F. Y., Lin, M. T., and Chiang, M. Y. 2004. Identification of Colletotrichum species in Taiwan based on the internal transcribed spacer of the ribosomal region. Plant Prot. Bull. 46: 15-26. Cook, R. T. 1993. Strawberry black spot caused by Colletotrichum acutatum. Pages 301-304 in: British Crop Protection Council Monograph No. 54: Plant Health and the European Single Market. D. Ebbels, ed. Hampshire UK. Correll, J. C., Rhoads, D. D., and Guerber, J. C. 1993. Examination of mitochondrial DNA restriction fragment length polymorphisms, DNA fingerprints, and randomly amplified polymorphic DNA of Colletotrichum orbiculare. Phytopathology 83: 1199-1204. Cullen, D. W., Lees, A. K., Toth, I. K., and Duncan, J. M. 2002. Detection of Colletotrichum coccodes from soil and potato tubers by conventional and quantitative real-time PCR. Plant Pathol. 51: 281-292. Dodd, J. C., Bugante, R., Koomen, I., Jeffries, P., and Jeger, M. J. 1991a. Pre- and post-harvest control of mango anthracnose in the Philippines. Plant Pathol. 40: 576-583. Dodd, J. C., Estrada, A., Marcham, J., Jeffries, P., and Jeger, M. J. 1991b. The effect of climatic factors on Colletotrichum gloeosporioides, the causal agent of mango anthracnose, in the Philippines. Plant Pathol. 40: 568-575. Edwards, K., Johnstone, C., and Thompson, C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19: 1349. Fitzell, R. D. 1979. Colletotrichum acutatum as a cause of anthracnose of mango in New South Wales. Plant Dis. Rep. 63: 1067-1070. Fitzell, R. D., and Peak, C. M. 1984. The epidemiology of anthracnose disease of mango: inoculum source, spore production and dispersal. Ann. Appl. Biol. 104: 53-59. Fitzell, R. D., Peak, C. M., and Darnell, R. E. 1984. A model for estimating infecting levels of anthracnose disease of mango. Ann. Appl. Biol. 104: 451-458. Freeman, S., and Katan, T. 1997. Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology 87: 516-521. Freeman, S., and Rodriguez, R. J. 1995. Differentiation of Colletotrichum species responsible for anthracnose of strawberry by arbitrarily primed PCR. Mycol. Res. 99: 501-504. Freeman, S., Katan, T., and Shabi, E. 1996. Characterization of Colletotrichum gloeosporioides isolates from avocado and almond fruits with molecular and pathogenicity test. Appl. Environ Microbiol. 62: 1014-1020. Freeman, S., Katan, T., and Shabi, E. 1998. Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Dis. 82: 596-605. Freeman, S., Pham, M., and Rodriguez, R. J. 1993. Molecular genotyping of Colletotrichum species based on by arbitrarily primed PCR, A+T-rich DNA, and nuclear DNA analysis. Exp. Mycol. 17: 309-322. Freeman, S., Minze, D., Jurkevitch, E., Maymon, M., and Shabi, E. 2000. Molecular analysis of colletotrichum species from almond and other fruits. Phytopathology 90: 608-614. Gindrat, D., and Pezet, R. 1994. Paraquat: a tool for the quick development of latent fungal infection and endophytic fungi (In French with English abstract). J. Phytopathol. 141: 86-98. Henson, J. M., and French, R. 1993. The polymerase chain reaction and plant disease diagnosis. Annu. Rev. Phytopathol. 31: 81-109. Hodson, A., Mills, P. R., and Brown, A. E. 1993. Ribosomal and mitochondrial DNA polymorphisms in Colletotrichum gloeosporioides isolated from tropical fruits. Mycol. Res. 97: 329-335. Jeffries, P., Dodd, J. C., Jeher, M. J., and Publmbley, R. A. 1990. The biology and control of Colletotrichum species on tropical fruit crops. Plant Pathol. 39: 343-366. Johnston, P. R., and Jones, D. 1997. Relationships among Colletotrichum isolates from fruit-rots assessed using rDNA sequences. Mycologia 89: 420-430. Kaye, C., Milazzo, J., Rozenfeld, S., Lebrun, M. H., and Tharreau, D. 2003. The development of simple sequence repeat markers for Magnaporthe grisea and their integration into an established genetic linkage map. Fungal Genet. Biol. 40: 207-14. Khan, M., and Sinclair, J. B. 1991. Effect of soil temperature in infection of soybean roots by sclerotia-froming isolates of Colletotrichum truncatum. Plant Dis. 75: 1282-1285. Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T., and Okuno, T. 2004. Fungicide activity through activation of a fungal signaling pathway. Mol. Microbiol. 53: 1785-96. Kuo, K. C. 2001. Sensitivity of mango anthracnose pathogen, Colletotrichum gloeosporioides, to the fungicide prochloraz in Taiwan. Proc. Natl. Sci. Counc. ROC(B) 25: 174-179. Kuo, K. C. 1999. Germination and Appressorium Formation in Colletotrichum gloeosporioides. Proc. Natl. Sci. Counc. ROC(B) 23: 126-132. Lee, S. B., and Taylor, J. W. 1990. Isolation of DNA from fungal mycelia and single spore p. 282-287. In: PCR Protocols: A guide to methods and applications. (M. A. Innis, D. V. Gelfand, J. J. Sninsky, and T. J. White,eds.) Academic Press., New York. 482pp. Lenne, J. M., Sonoda, R. M., and Parbery, D. G. 1984. Production of conidia by setae of Colletotrichum species. Mycologia. 76: 359-362. Letite, B., and Nicholson, R. L. 1992. Mycosporine-alanine: a self-inhibitor of germination from the conidial mucilage of Colletotrichum graminicola. Experimental Mycology 16: 76-86. Lewis Ivey, M. L., Nava-Diaz, C., and Miller, S. A. 2004. Identification and management of Colletotrichum acutatum on immature bell peppers. Plant Dis. 88: 1198-1204. Lian, C., Hogetsu, T., Matsushita, N., Guerin-Laguette, A., Suzuki, K., and Yamada, A. 2003. Development of microsatellite markers from an ectomycorrhizal fungus, Tricholoma matsutake, by an ISSR-suppression- PCR method. Mycorrhiza 13: 27-31. Lim, T. K., and Khoo, K. C. 1988. Diseases and disorders of mango in malaysia. Art Printing Works SDN, BHD. Kuala Limpr, Malaysia. 101 pp. Lin J. L., Liu L., and, Leu M. L. 1995. Recovery of respiratory function in survivors with paraquat intoxication. Arch. Environ. Health 50: 432-439. Liu, X., Hung, S., Yang, Y., and Xie, Y. 1995. Effects of phenols on growth and reproduction of Colletotrichum in latent infection. Acta Mycol. Sinica 14: 277-282. Liyanage, H. D., McMillan, R. T., and Kistler, H. C. 1992. Two genetically distinct population of Colletotrichum gloeosporioides from citrus. Phytopathology 82: 1371-1376. Louis, I., and Cooke, R. C. 1985. Conidial matrix and spore germination in some plant pathogens. Trans. Br. Mycol. Soc. 84: 661-667. Louis, I., and Cooke, R. C. 1985. Enzymes in conidial matrix of Colletotrichum gloeosporioides and Mycosphaerella pinodes. Trans. Br. Mycol. Soc. 84: 742-745. Lu, G., Cannon, P. F., Reid, A., and Simmons, C. M. 2004. Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Guyana. Mycol. Res. 108: 53-63. Martin, M. P., and Garcia-Figueres, F. 1999. Colletotrichum acutatum and C. gloeosporioides cause anthracnose on olives. Eur. J. Plant Pathol. 105: 733-741. Martinez-Culebras, P. V., Barrio, E., Garica, M. D., and Querol, A. 2000. Identification of Colletotrichum species responsible for anthracnose of strawberry based on the internal transcribed spacers of the ribosomal region. FEMS Microbiol. Lett. 189: 97-101. Martinez-Culebras, P. V., Querol, A., Suarez-Fernadez, M. B., Garcia-Lopez, M. D., and Barrio, E. 2003. Phylogenetic relationships among Colletotrichum pathogens of strawberry and design of PCR primers for their identification. J. Phytopathol. 151: 135-143. Masel, A. M., Irwin, J. A., and Manners, J. M. 1993. Mini-chromosomes of Colletotrichum spp. infecting several host species in various countries. Mycol. Res. 97: 852-856. Mertely, J. C., and Legard, D. E. 2004. Detection, isolation, and pathogenicity of Colletotrichum spp. from strawberry petioles. Plant Dis. 88: 407-412. Mills, P. R., Sreenivasaprasad, S., and Brown, A. E. 1992b. Detection and differentiation of Colletotrichum gloeosporioides isolates using PCR. FEMS Microbiol. Lett. 98: 137-144. Moriwaki, J., Sato, T., and Tsukiboshi, T. 2003. Morphological and molecular characterization of Colletotrichum boninense sp. nov. from Japan. Mycoscience 44: 47-53. Moriwaki, J., Ohkubo, H., Horie, H., Kasuyama, S., and Sato, T. 1997. Genotypic differences between Colletotrichum higginsianum and C. gloeosporioides based on arbitrarily primed PCR analysis. Ann. Phytopathol. Soc. Jpn. 63: 395-398. Morrall, R. A. A., Beaule, R., Ahmed, S., Downing, J. L., and Pearse, P. G. 1993. Anthracnose and ascochyta blight of lentil in central Saskatchewan in 1992. Can. Plant Dis. Surv. 73: 91-92. Mueller, U. G., Lipari, S. E., and Milgroom, M. G. 1996. Amplified fragment length polymorphism (AFLP) fingerprinting of symbiotic fungi cultured by the fungus-growing ant Cyphomyrmex minutus. Mol. Ecol. 5: 119-122. Munanut, F., Hamaide, N., Stappen, J. V., and Maraite, H. 1998. Genetic relarionships among isolates of Colletotrichum gloeosporioides from Stylosanthes spp. in Africa and Australia using RAPD and ribosomal DNA markers. Plant Pathol. 47: 641-648. Parikka, P., and Lemmetty, A. 2004. Tracing latent infection of Colletotrichum acutatum on strawberry by PCR. Eur. J. Plant Pathol. 110: 393-398. Ploetz, R. C. 1994. Anthracnose. Pages 35-36 in: Compendium of Tropical Fruit Diseases. R. C. Ploetz, G. A. Zentmyer, W. T. Nishijima, K. G. Rohrbach, and H. D. Ohr, eds. American Phytopathological Society, St. Paul, MN. Prusky, D. 1996. Pathogen quiescence in postharvest diseases. Annu. Rev. Phytopathol. 34: 413-434. Prusky, D., Kobiler, I., Fishman,Y., Sims, J. J., Midland, S. L., and Keen, N. T. 1991. Identification of an antifungal compound in unripe avocado fruits and its possible involvement in the quiescent infections of Colletotrichum gloeosporioides. J. Phytopathol. 132: 319-327. Prusky, D., and Plumbley, R. A. 1992. Quiescent infection of Colletotrichum gloeosporioides in the tropics. In: Colletotrichum: Biology, Pathology and Control, pp. 289-308 (Bailey, J. A. and Jeger, M. J., Eds.), CAB International, Wallingford, U.K. Sambrook, D., Nicklen, S., and Coulson, A. R. 1989. Molecular cloning: A laboratory Manual. 2nd ed., Cold Sporing Harbor, New York. p. 1.25-1.37. Sheriff, C., Whelan, M. J., Arnold, G. M., and Bailey, J. A. 1995. rDNA seqence analysis confirms the distinction between Colletotrichum graminicola and C. sublineolum. Mycol. Res. 99: 475-478. Shi, Y., Correll, J. C., Guerber, J. C., and Rom, C. R. 1996. Frequency of Colletotrichum species causing bitter rot if apple in the Southern United States. Plant Dis. 80: 692-696. Simmonds, J. H. 1963. Studies in the latent phase of Colletotrichum species causing ripe rots of tropical fruits. Qld. J. Agric. Anim. Sci. 20: 373-424. Simmonds, J. H. 1965. A study of the species of Colletotrichum causing ripe fruit rots in Queens Land. Qld. J. Agric. Anim. Sci. 22: 437-459. Sinclair, J. B. 1991. Latent infection of soybean plants and seeds by fungi. Plant Dis.75: 220-224. Sreenivasaprasad, S., Brown, A. E., and Mills, P. R. 1996. PCR-based detection of Colletotrichum acutatum on strawberry. Plant Pathol. 45: 650-655. Sreenivasaprasad, S., Mills, P. R., and Brown, A. E. 1994. Nucleotide sequence of the rDNA spacer 1 enables identification of isolates of Colletotrichum as C. acutatum. Mycol. Res. 98: 186-188. Sreenivasaprasad, S., Mills, P. R., Meehan, B. M., and Brown, A. E. 1996. Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences. Genome 38: 499-512. Sutton, B. C. 1962. The appressoria of Colletotrichum graminicola and C. falctum. Can. J. Bot. 46: 873-876. Swinburne, T. R. 1976. Stimulants of germination and appressoria formation by Colletotrichum musae (Berk. & Curt) Arx. in banana leachate. Phytopathology 87: 74-90. Talhinhas, P., Sreenivasaprasad, S., Neves-Martins, J., and Oliveira, H. 2002. Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology 92: 986-996. Taylor, J. W. 1986. Topical review fungal evolutionary biology and mitochondrial DNA. Exp. Mycol. 10: 259-269. Tautz, D. 1989. Hypervariablity of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Res. 17: 6463-6471. Timmer, L. W. 1998. The role of Colletotrichum spp. in postharvest anthracnose of citrus and survival of C. acutatum on fruit. Plant Dis. 82: 415-418. Valente, P., Gouveia, F. C., de Lemos, G. A., Pimentel, D., van Elsas,J. D., Mendonca-Hagler, L. C., and Hagler, A. N. 1996. PCR amplification of the rDNA differentiation of Saccharomyces cultures. FEMS Microbiol. Lett. 137: 253-256. Verhoeff, K. 1974. Latent infections by fungi. Annu. Rev. Phytopathol. 12: 99-110. Vos, P., Hogers, R., Bleeker, M., Rijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP: a new technique for DNA frigerprinting. Nucleic Acids Res. 21: 4407-4414. Wang, H., Qi, M., and Culter, A. J. 1993. A simple method of preparing plant samples for PCR. Nucleic Acids Res. 21: 4153-4154. Weeds, P. L., Chakraborty, S., Fernandes, C. D., Charchar, M. J. d'A., Ramesh, C. R., Kexian, Y., and Kelemu, S. 2003. Genetic diversity in Colletotrichum gloeosporioides from Stylosanthes spp. at centers of origin and utilization. Phytopathology 93: 176-185. Weising, K., Atkinson, R. G., and Gardner, R. C. 1995. Genomic fingerprinting by microsatellite-primed PCR: a critical evaluation. PCR Meth. Applications 4: 249-255 Wheeler, H. W. 1954. Genetics and evolution of heterothallism in Glomerella. Phytopathology 44: 342-345. White, T. J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (Eds.), PCR protocols pp.315-320. Academic Press. Williams, J. G. K., Kubelik, A. R., Liva, K. L., Rafalski, J. A., and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. Zietkiewicz, E., Rafalski, A., and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics 20: 176-183. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35676 | - |
dc.description.abstract | 台灣地處亞熱帶及熱帶地區,氣候及環境皆適於作物生產,但是病害的發生,也相對較為嚴重。就芒果而言,由Colletotrichum gloeosporioides所引起之炭疽病(anthracnose)最為嚴重,會使果實之櫥架壽命與經濟價值降低,為芒果外銷的最主要限制因子。由於C. gloeosporioides寄主範圍廣泛,再加上形態特徵常因遺傳特性及後天培養條件等之影響而有變異,以致診斷鑑定上常備受困擾且費時耗力。C. gloeosporioides感染芒果時,常在未成熟果實進行潛伏感染,而至果實後熟時期才造成明顯病徵,是芒果產銷過程最為棘手的問題。為開發潛伏感染檢測技術,本研究建立以低溫處理法,提早顯現潛伏感染於芒果葉片或果實炭疽病菌的存在情形。分析結果顯示,低溫處理法之檢測效率,與先前已發表之巴拉刈及益收生長素處理法相當,但提供了更為安全與方便之檢測技術。此外,本研究根據核醣體內轉錄間隔區(ribosomal RNA internal transcribed spacer, ITS)設計引子對,開發以Nested polymerase chain reaction (Nested PCR)檢測C. gloeosporioides之技術,但由於C. gloeosporioides與C. musae之ITS序列具高度相同性,無法利用此技術加以區分。為進一步開發C. gloeosporioides專一性檢測技術,另針對炭疽病菌粒線體 cytochrome c oxidase subunitⅠ(COXⅠ)及subunit Ⅱ (COXⅡ)進行序列分析,以便據以設計核酸引子對。利用所設計之degenerate primers所進行之PCR顯示,自C. acutatum菌株可增幅出預期之核酸片段,序列分析顯示其序列亦與其他真菌之COXⅠ及COXⅡ具顯著保守性,但在C. gloeosporioides及C. musae則無法增幅出來任何預期片段。另外,本研究亦嘗試應用Amplified fragment length polymorphism (AFLP)分析C. gloeosporioides及C. musae菌株,並針對部分差異性片段進行序列分析,期能開發出能有效區分這兩種炭疽病菌之PCR檢測技術。 | zh_TW |
dc.description.abstract | In Taiwan, Colletotrichum gloeosporioides are important plant pathogens which cause leaf spotting, fruit staining and rot on Mangifera indica (mango). The detection and diagnosis of Colletotrichum spp. are usually difficult, because of the latent infection and highly morphological variations in the culture conditions. To improve the efficiency of detection and identification of Colletotrichum, we used freezing process, chemical treatment and molecular techniques. In this study, a more safe and convenient of freezing treatment process was investigated and developed as a substitute for Paraquat and Ethephon in the detection of latent infection of Colletotrichum spp. on mango plants. Besides, we designed two primer pairs within ribosomal RNA internal transcribed spacer (ITS) to detect C. gloeosporioides by Nested polymerase chain reaction (Nested PCR). However, due to the sequence conservation of the ITS region between C. gloeosporioides and C. musae, we failed to discriminate by Nested PCR. To improve the species-specificity detection techniques, degenerate primers were designed bared on the mitochondrial cytochrome c oxidase subunitⅠ(COXⅠ) and subunit Ⅱ (COXⅡ) of Colletotrichum spp. The results indicated that an expected fragment genes in C. actatum, but not C. gloeosporioides and C. musae was amplified only. Furthermore, the sequences of the fragments from C. actatum were similar to those COXⅠand COXⅡ reported in Ascomycota. In addition, Amplified fragment length polymorphism (AFLP) was utilized to analyze the difference between C. gloeosporioides and C. musae at the molecular level. Sequence analyses of the differentially amplified fragment are needed to further develop more efficient PCR detection technique for C. gloeosporioides and C. musae. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:04:22Z (GMT). No. of bitstreams: 1 ntu-94-R91633015-1.pdf: 1633338 bytes, checksum: c3f2e01e6510b44114156c3e5daf5346 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 中文摘要-------------------------------------------------------------------------------Ⅰ
Abstract --------------------------------------------------------------------------------Ⅱ 壹、前言---------------------------------------------------------------------------------1 貳、前人研究---------------------------------------------------------------------------3 一、芒果炭疽病之病害史------------------------------------------------------3 二、炭疽病菌之分類地位、形態特性---------------------------------------3 三、炭疽病菌之侵入機制與病徵---------------------------------------------5 四、炭疽病菌潛伏感染機制之探討------------------------------------------6 五、炭疽病菌之鑑定與檢測技術---------------------------------------------8 (一)組織分離培養---------------------------------------------------------8 (二)顯微鏡鏡檢------------------------------------------------------------8 (三)化學藥劑處理誘發潛伏感染---------------------------------------8 (四)分生技術應用於炭疽病檢測---------------------------------------9 參、材料與方法-----------------------------------------------------------------------13 一、芒果果樹及供試菌株之來源--------------------------------------------13 二、菌株分離培養與保存-----------------------------------------------------13 三、孢子懸浮液之製備與接種方式-----------------------------------------13 四、分生孢子於植物組織上的觀察-----------------------------------------15 五、以化學藥劑及低溫冷凍處理法偵測芒果炭疽病菌-----------------15 六、核酸製備及濃度測定-----------------------------------------------------16 七、核酸定序--------------------------------------------------------------------17 (一)rDNA ITS核酸片段增幅-------------------------------------------17 (二)PCR擴增產物選殖至T-vector (TA-cloning) --------------------18 (三)選殖株篩選-----------------------------------------------------------18 (四)定序反應--------------------------------------------------------------19 (五)酒精沈澱--------------------------------------------------------------20 (六)序列分析--------------------------------------------------------------20 八、限制片段長度多形性分析-----------------------------------------------20 九、引子對選試-----------------------------------------------------------------23 十、聚合酵素連鎖反應--------------------------------------------------------24 (一)Nested PCR----------------------------------------------------------24 (二)SSR-PCR-------------------------------------------------------------24 十一、增幅產物之瓊脂電泳分析-----------------------------------------------25 肆、結果---------------------------------------------------------------------------------26 一、芒果炭疽病菌的分離與培養--------------------------------------------26 二、接種濃度與病害發生之關係--------------------------------------------26 三、以化學藥劑及冷凍處理法偵測潛伏感染之芒果炭疽病-----------27 (一)檢測人工接種之組織---------------------------------------------27 (二)檢測田間潛伏感染之組織---------------------------------------29 四、ITS region 之分析結果---------------------------------------------------31 (一)rDNA序列分析----------------------------------------------------31 (二)選試引子對之專一性及靈敏度測試---------------------------32 (三)Nested PCR 偵測結果--------------------------------------------33 五、Cytochrome c oxidase gene之分析結果---------------------------------34 六、限制片段長度多形性分析之分析結果----------------------------------37 (一)AFLP分子標誌分析----------------------------------------------37 (二)差異性DNA片段的回收與增幅-------------------------------37 (三)SSR-PCR偵測結果-----------------------------------------------38 伍、討論---------------------------------------------------------------------------------40 陸、參考文獻---------------------------------------------------------------------------46 柒、表------------------------------------------------------------------------------------55 捌、圖------------------------------------------------------------------------------------61 玖、附錄---------------------------------------------------------------------------------89 | |
dc.language.iso | zh-TW | |
dc.title | 芒果炭疽病菌潛伏感染檢測與分子鑑定技術之研發 | zh_TW |
dc.title | Development of Techniques for Detection of Latent Infection and Molecular Identification of Mango Anthracnose Fungi | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳隆鐘,曾顯雄,沈偉強 | |
dc.subject.keyword | 芒果,炭疽病,潛伏感染,內轉錄間隔區,粒線體, | zh_TW |
dc.subject.keyword | mango,anthracnose,latent infection,ITS,mitochondrial, | en |
dc.relation.page | 92 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。