請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35607
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪ㄧ平(Yi-Ping Huang) | |
dc.contributor.author | Hsien-Ting Cheng | en |
dc.contributor.author | 鄭先廷 | zh_TW |
dc.date.accessioned | 2021-06-13T07:00:50Z | - |
dc.date.available | 2005-07-29 | |
dc.date.copyright | 2005-07-29 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-27 | |
dc.identifier.citation | [1] G. Hachez, F. Koeune, and J.-J. Quisquater. Biometrics, access control, smart cards: a not so simple combination. In Conference on Smart Card Research and Advanced Applications (CARDIS 2000), pages 273–288, September 2000.
[2] T. Kanade. Computer recognition of human faces. Birkhauser Verlag, Stuttgart, Germany 1973 [3] R. Brunelli and T. Poggio. Face recognition: features versus templates. IEEE Trans. on Pattern Analysis and Machine intelligence, 15(10), 1993. [4] I. Cox, J. Ghoshn, and P. Yianilos. Feature-based face recognition using mix-ture distance. In Proceedings of the International Conference on Computer Vi-sion and Pattern Recognition, 1996. [5] M. Lades, J. C. Vorbr ‥uggen, J. Buhmann, J. Lange, C. von der Malsburg, R. P. W‥urtz, and W. Konen. Distortion invariant object recognition in the dy-namic link architecture. IEEE Transactions on Computers, 42(3):300–311, Mar. 1993. [6] L. Wiskott, J.-M. Fellous, N. Kr ‥uger, and C. von der Malsburg. Face recog-nition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):775–779, July 1997. [7] C. Kotropoulos, A. Tefas, and I. Pitas. Frontal face authentication using mor-phological elastic graph matching. IEEE Transactions on Image Processing, 9(4):555–560, Apr. 2000. [8] J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency and orientation optimised by two dimensional cortical filters. J. Opt. Soc. Amer., 2(7):1160–1169, 1985. [9] J. Matas, K. Jonsson, and J. Kittler. Fast face localisation and verification. In Proceedings of British Machine Vision Conference, 1997. [10] R. Baron. Mechanisms of human recognition. Int. Journal of Man Machine Studies, 15(2), 1981. [11] M. Kirby and L. Sirovich. Application of the Karhunen-Lo`eve procedure for characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):103–108, 1990. [12] C. Liu and H. Wechsler. Enhanced fisher linear discriminant models for face recognition. In Proceeding of the International Conference on Pattern Recogni-tion (ICPR), 1998. [13] A. Pentland, B. Moghaddam, and T. Starner. View-based and modular eigen-spaces for face recognition. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, 1994. [14] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of cognitive neu-roscience, 3(1), 1991. [15] W. Zhao, R. Chellappa, and A. Krishnaswamy. Discriminant analysis of princi-pal components for face recognition. In Proc. of Int. Conf. on Automatic Face and Gesture Recognition, pages 336–341, 1998. [16] D. Swets and J. Weng. Using discriminant eigenfeatures for image retrieval. IEEE Trans. on Pattern Analysis and Machine intelligence, 18(8), 1996. [17] K. Etemad and R. Chellappa. Discriminant analysis for recognition of human face images. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing, pages 2148–2151, 1994. [18] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fisher-faces: Recognition using class specific linear projection. IEEE Trans. On Pat-tern Recognition and Machine Intelligence, 19(7):711–720, 1997. [19] A. Lanitis, C. J. Taylor, and T. F. Cootes. Automatic interpretation and coding of face images using flexible models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):743–756, 1997 [20] A. Lanitis, C. Taylor, and T. Cootes. Towards automatic simulation of ageing effects on face images. IEEE Transactions on Pattern Analysis and Machine In-telligence, 24(4):442–455, 2002. [21] J. Fitzpatrick, D. Hill, and C. Maurer. Image registration. In M. Sonka and J. Fitzpatrick, editors, Handbook of medical imaging, vol. 2, pages 449–513. SPIE press, 2000. [22] T. Cootes, G. Edwards, and C. Taylor. Active appearance models. In Proceed-ings of the European Conference on Computer Vision, 1998. [23] T. Cootes, C. Taylor, A. Lanitis, D. Cooper, and J. Graham. Building and using flexible models incorporating grey level information. In Proceedings of the In-ternational Conference on Computer Vision, pages 242–246, 1993. [24] G. Lindzey, Ed., Addison-Wesley, “The perception of people.” In Handbook of Social Psychology, Vol. 2, Reading, MA, 634–654. [25] The model method in facial recognition. Tech. rep. PRI:15, Panoramic research Inc., Palo Alto, CA. [26] John Murray, “The Expression of the Emotions in Man and Animals.” Lon-don,U.K. [27] Personal identification and description. Nature, (June 21), 173–188. [28] Visual identification of people by computer. Tech. rep. AI-130, Stanford AI Project, Stanford, CA. [29] Neural and psychophysical analysis of object and face recognition. In Face Recognition: From Theory to Applications, H.Wechsler, P. J. Phillips, V. Bruce, F. F. Soulie, and T. S. Huang, Eds. Springer-Verlag, Berlin, Germany, 3–25. [30] Introduction to aspects of face processing: Ten questions in need of answers. In Aspects of Face Processing, H. Ellis, M. Jeeves, F. Newcombe, and A. Young, Eds. Nijhoff, Dordrecht, The Netherlands, 3–13. [31] Can face recognition really be dissociated from object recognition? J. Cogn. Neurosci. 11, 349–370. [32] Is face recognition so unique after All? J. Cogn. Neuropsych. 17, 125–142. [33] Face recognition based on depth maps and surface curvature. In SPIE Proceed-ings, Vol. 1570: Geometric Methods in Computer Vision. SPIE Press, Belling-ham, WA 234–247. [34] The model method in facial recognition. Tech. rep. PRI:15, Panoramic research Inc., Palo Alto, CA. [35] H. Bourlard and N. Morgan. Speaker Verification: A Quick Overview. IDIAP research report, 1998 [36] S. Furui. Cepstral analysis technique for automatic speaker verification. Proc. IEEE Intl. Conf. on Acoustic, Speech, and Signal Processing, 29:254=272, 1981. [37] A.E. Rosenberg, C.-H. Lee, and S. Goken. Connected word talker verification using whole word hidden markov modeling. Proc, IEEE Intl. Conf. on Acoustic, Speech, and Signal Processing, pages 281-284, 1991. [38] C. Montacie, P. Deleglise, F. Bimbot, and M.J. Caraty. Cinematic techniques for speech processing:temporal decomposition and multivariate linear predic-tion. Proc IEEE Intl. Conf. on Acoustic, Speech, and Signal Processing, 1992 [39] F.K. Soong, A.E. Rosenberg, L.R. Rabiner, and B.H. Juang. A vector quantiza-tion approach to speaker recognition. Proc IEEE Intl. Conf. on Acoustic, Speech, and Signal Processing, 1985 [40] D.A. Reynolds. Speaker identification and verification using gaussian mixture speaker models. ESCA Workshop on Automatic Speaker Recognition, Identifi-cation and Verification, 1994. [41] Oglesby, J. & Mason, J.S., Optimization of neural models for speaker identifica-tion, Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (Albu-querque, NM), pp. 261-264, 1990. [42] R. Brunelli and D. Falavigna. Person identification using multiple cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(10):955–966, Oct 1995. [43] M. Acheroy, C. Beumier, J. Bigün, G. Chollet, B. Duc, S. Fischer, D. Genoud, P. Lockwood, G. Maitre, S. Pigeon, Pitas, K. Sobottka, L. Vandendorpe. Proceed-ings of the European Conference on Multimedia Applications, Services and Techniques 1996 [44] U. Dieckmann, P. Plankensteiner 1, T. Wagner. SESAM: A biometric person identification system using sensor fusion. Pattern Recognition Letters 1997 827-833. [45] E. S. Bigun, J. Bigun, B. Duc, S. Fischer. Expert conciliation for multi modal person authentication systems by Bayesian statistics. AVBPA 1997 [46] J. Kittler, Y P Li, J Matas and M U Ramos S´anchez. Combining Evidence in Multimodal Personal Identity Recognition Systems AVBPA 1997 [47] Souheil Ben-Yacoub, Yousri Abdeljaoued, and Eddy Mayoraz. Fusion of Face and Speech Data for Person Identity Verification IEEE Transactions on Neural Networks. Vol. 10. No5. September. [48] Patrick Verlinde G´erard Chollet_ Marc Acheroy. Multi-Modal Identity Verifi-cation Using Expert Fusion [49] Samy Bengio Multimodal Authentication using Asynchronous HMMs AVBPA 2003 [50] MULTI-MODAL FACE AND SPEAKER IDENTIFICATION ON A HAND-HELD DEVICE 2003 [51] Josef Kittler, Mohamad Hatef, Robert P.W. Duin, and Jiri Matas, “On Combin-ing Classifiers”, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 3, MARCH 1998 [52] J. Czyz, J. Kittler, and L. Vandendorpe. Combining face verification experts. In Proc. of Int. Conf. on Pattern Recognition, Quebec, Canada, August 2002. [53] D. Genoud, G. Gravier, F. Bimbot, and G. Chollet. Combining methods to im-prove the phone based speaker verification decision. In Proc. of Int. Conf. on Spoken Language processing, 1996. [54] A. K. Jain, S. Prabhakar, and S. Chen. Combining multiple matchers for a high security fingerprint verification system. Pattern Recognition Letters, 20, 1999. [55] S. Prabhakar and A. K. Jain. Decision-level fusion in fingerprint verification. Pattern Recognition, 35:861–874, 2002. [56] S. Bengio, “Multimodal Authentication Using Asynchronous HMMs,” Proc. Intl. Conf. AVBPA, 2003. [57] S. Ben-Yacoub, “Multi-modal Data Fusion for Person Authentication using SVM,” Proc. Intl. Conf. AVBPA, 1999. [58] R. Brunelli and D. Falavigna, “Person Identity Using Multiple Cues,” IEEE Trans. on PAMI, 1995. [59] W. H. Lin, R. Jin, and A. Hauptmann, “Meta-classification for Multimedia Classifiers,” Proc. Intl. Workshop on Knowledge Discov. in Multimedia & Complex Data, 2002. [60] Chan-Hung Su, Yong-Sheng Chen, Yi-Ping Hung, Chu-Song Chen, and Jiun-Hung Chen, “A Real-Time Robust Eye Tracking System for Autostereo-scopic Displays Using Stereo Cameras,” Proceedings IEEE ICRA 2003. [61] P. Viola, and M. Jones, “Rapid Object Detection using a Boosted Cascade of Simple.” Proc. IEEE CVPR 2001. [62] S.–D. Wei, and S.–H. Lai, “Robust Face Recognition under Lighting Varia-tions,” Proc. IEEE ICPR 2004. [63] J. –T Chien, and C. –C. Wu, “Discriminant Waveletfaces and Nearest Feature Classifiers for Face Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 24, Issue 12, December 2002. [64] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. In Computational Learning The-ory: Eurocolt ’95, pages 23–37. Springer-Verlag, 1995. [65] Q. Liu, et al., “Face Recognition Using Kernel Based Fisher Discriminant Analysis,” Proc. FG 2002. [66] S. Mika, A.J. Smola, and B. Scholkopf, “An improved training algorithm for kernel fisher discriminants,” Proc. AISTATS 2001. [67] M. H. Yang, “Face Recognition Using Kernel Methods,” Proc. NIPS 2002. [68] S. Mika, Kernel Fisher Discriminants. PhD thesis, University of Technology, Berlin, October 2002. [69] G. H. Golub and C. F. van Loan. Matrix Computations, 3rd edition, John Hop-kins University Press, London, 1996. [70] D. A. Reynolds, “Speaker Identification and Verification using Gaussian Mix-ture Speaker Models”, Speech Communication, 17, pp. 179-192, 1995. [71] X. Huang, A. Acero, H. W. Won, Spoken Language Processing, Prentics Hall, New Jersey, 2001. [72] S. S. Cheng, H. M. Wang, and H. C. Fu, “A Model-selection-based Self-splitting Gaussian Mixture Learning with Application to Speaker Identifi-cation,” EURASIP Journal on Applied Signal Processing, 17, pp. 1-14, 2004. [73] B. Chen, et al., “A*-admissible key-phrase spotting with sub-syllable level ut-terance verification,” Proc. ICSLP1998. [74] D. A. Reynolds, “Speaker Identification and Verification using Gaussian Mix-ture Speaker Models”, Speech Communication, 17, pp. 179-192, 1995. [75] R. Duin and D. Tax. Classifier conditional posterior probabilites. In Advance in Pattern Recognition, volume LNCS 1451. Springer, 1998. [76] H. VanTrees. Detection, Estimation and Modulation Theory. Wiley, 1968. [77] H. T. Cheng, Y. H. Chao, S. L. Yeh, C. S. Chen, H. M. Wang, and Y. P. Hung, “An Efficient Approach to Multi-modal Person Identity Verification by Fusing Face and Voice Information,” Proc. IEEE International Conference on Multi-media & Expo, ICME 2005, Amsterdam, The Netherlands, July 2005 [78] P. Philips, “Support vector machines applied to face recognition,” Advances in Neural Information Processing System 11, pp. 803-809, 1998 [79] V. Vapnik, Statistical learning theory, John Wiley & Sons, New York, 1998. [80] K.I. Kim, K. Jung, S.H. park, and H.J. Kim, “Support Vector Machine for Tex-ture Classification”, IEEE Transaction on Pattern Analysis and Machine Intel-ligence, vol. 24., no. 11, pp 1542-1550, November 2002. [81] C. Ding and I. Dubchak, “Multi-Class Protein Fold Recognition using Support Vector Machine and Neural Network,” Bioinfomatics, 2001. [82] T. M. Cover, “Geometrical and Statistical Properties of System of Linear Ine-qualities with Application in Pattern Recognition,” IEEE Transaction on Elec-tronic Computers, 1965 [83] B.E. Boser, I.M. Guyon and V. Vapnik, “A Training Algorithm for Optimal Margin Classifiers”, Proceeding of ACM Workshop Computational Learning Theory, 1992. [84] S. Ben-Yacoub, “Multi-modal Data Fusion for Person Authentication using SVM,” Proc. Intl. Conf. AVBPA, 1999. [85] C. S. Chen et al., “Nonlinear Boost,” Technical Report, TR-IIS-04-001, Inst. Info. Sci., Acad. Sinica, Taiwan, 2004. [86] W. H. Lin, R. Jin, and A. Hauptmann, “Meta-classification for Multimedia Classifiers,” Proc. Intl. Workshop on Knowledge Discov. in Multimedia & Complex Data, 2002. [87] P. K. Chan, and S. J. Stolfo. Toward scalable learning with non-uniform class and cost distributions: a case study in credit card fraud detection. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Min-ing, pages 164-168, 2001. [88] A. van den Bosch, T. Weijters, H. J. van den Herik, and W. Daelemans. When small disjuncts abound, try lazy learning: A case study. In Proceedings of the Seventh Belgian-Dutch Conference on Machine Learning, pages 109-118, 1997. [89] J. W. Grzymala-Busse, Z. Zheng, L. K. Goodwin, and W. J. Grzymala-Busse. An approach to imbalanced data sets based on changing rule strength. In Learning from Imbalanced Data Sets: Papers from the AAAI Workshop, pages 69-74, AAAI Press Technical Report WS-00-05, 2000. [90] G. M. Weiss, and H. Hirsh. Learning to predict rare events in event sequences. In Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, pages 359-363, 1998. [91] Editorial: Special Issue on Learning from Imbalanced Data Sets. ACM Special Interest Group on Knowledge Discovery and Data Mining 2004. [92] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, W. Philip Kegelmeyer, “Synthetic Minority Over-Sampling Technique”, Artificial Intelligence 2002 [93] Philip K. Chan, Salvatore J. Stolfo, “Toward Scalable Learning with Non-uniform Class and Cost Distribution”, American Association for Artificial Intelligence (AAAI) 1998. [94] Rong Yan, Yan Liu, Rong Jin, Alex Hauptmann,”On Predicting Rare Classes with SVM Ensembles in Scene Classification”, IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), April 6-10, 2003. [95] Dacheng Tao and Xiaoou Tang, “Random Sampling Based SVM for Relevance Feedback Image Retrieval”, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04) [96] L. Breiman, “Bagging Predictors,” Int. J. on Machine Learning, no. 24, pp 123-140, 1996. [97] S. Pigeon and L. Vandendorpe. The M2VTS multimodal face database (release 1.00). In Proc. of Int. Conf. on Audio- and Video-based Person Authentication, pages 403–409, 1997. [98] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre. XM2VTSDB: the ex-tended M2VTS database. In Proc. of Int. Conf. on Audio- and Video-based Per-son Authentication, pages 72–77, March 1999. [99] J. Luettin and G. Maitre. Evaluation protocol for the extended M2VTS database. IDIAP, available at http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/faceavbpa2001/ proto-col.ps, 1998. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35607 | - |
dc.description.abstract | 在本論文中,根據更多的資訊將帶來較佳的辨識結果,我們提出了在信心層級來結合了人臉以及語音的資訊進而進行以生物特徵為基礎的身份確認。從系統的觀點,我們建構了一個讓使用者可輕鬆註冊、介面人性化、以及防止偽裝入侵的線上身份確認系統。以方法論的角度,我們使用了目前公認最好、最新的技術來發展人臉跟語音的模組。在整合部分,為了利用所有可使用的人臉資訊,我們提出了”多張人臉/單一語句”的策略進而降低了人臉偵測錯誤或是對位錯誤的風險。支持分類器(Support Vector Machine)被選用來當作二維分類器。
除了個別化的模組以及後端的整合,在此論文中我們更探討了”從一個不平衡資料集中學習”的問題。一般而言,我們都希望可以有越多的訓練資料可供訓練越好,然後若是訓練資料的分佈極不平衡,一般的分類器方法將會受到影響進而偏向資料較多的類別。此問題在分類問題中其實相當常見,但在身份辨識或是身份確認的領域,我們是首次提出並加以解決,實驗結果證明透過不同階層、方式的處理,將會使得不平衡的現象獲得改善。 | zh_TW |
dc.description.abstract | Based on the idea of more information brings better performance, in this thesis we presents a confidence-level fusion method to combine face and voice information in biometric person identity verification. In systematic aspect, we develop an on-line verification system with light-weight enrollment process, fraud precaution mechanism and an easy-to-use verification interface. While in algorithmic point of view, state-of-the art techniques are used to build the face and voice experts. More-over, a multi-face/single-sentence strategy is proposed to utilize all the available in-formation to reduce the cost of miss-detection and miss-registration of face, and support vector machine (SVM) is employed as the binary fusion classifier.
In addition to individual experts and the fusion work, another important issue proposed in this thesis is learning from a class-imbalanced dataset. To train a good classifier, most of the time we use as many training data as possible. However in lots of fields involving classification jobs, training data is highly imbalanced distributed from class to class, ordinary classification algorithms will favor to the class which has more training samples. In the field of identity verification we are the first one that discover such important issue and try to handle it. Different level approaches are studied and implemented to reduce the influence of imbalanced dataset and lead to better performance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:00:50Z (GMT). No. of bitstreams: 1 ntu-94-R92922006-1.pdf: 748362 bytes, checksum: 6f5a580f71c4fe1552a6b4d3eebff313 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | Table of Contents i
List of Figures v List of Tables vii Chapter 1 Introduction 1 1.1 Proposed method 4 1.2 Recognition, identification, or verification? 6 1.3 Organization of the thesis 7 Chapter 2 Background and related works 9 2.1 Biometric person identity verification 9 2.2 Face recognition 11 2.2.1 Introduction 11 2.2.2 Background 13 2.2.3 Local feature approach and holistic approach 16 2.3 Speaker recognition 19 2.3.1 Introduction 19 2.3.2 Text-dependent and text-independent speaker verification 21 2.4 Fusion of multiple modalities 24 2.4.1 Introduction 24 2.4.2 Background 25 Chapter 3 Multimodal fusion of face and speaker verification experts 27 3.1 Introduction 27 3.2 System design 31 3.2.1 System overview 31 3.3 Face verification expert 35 3.3.1 Cascade-boosting face detector 36 3.3.2 Eigen-eye localization technique 37 3.3.3 Reliable facial feature extraction 38 3.3.4 Incremental Kernel Fisher Discriminant learning 38 3.4 Speaker verification expert 41 3.4.1 Log-likelihood ratio detector 41 3.4.2 Integration of speech recognition and Speaker verification 42 3.5 Information fusion 43 3.5.1 Confidence level fusion 43 3.5.2 Multi-face/single-sentence strategy 46 3.5.3 Decision making 47 Chapter 4 Learning from imbalanced data sets 53 4.1 Introduction 53 4.2 Data level approaches 55 4.2.1 Random re-sampling 56 4.2.2 Synthetic minority over-sampling technique 56 4.2.3 Asymmetric bagging 58 4.3 Algorithmic level approaches 59 4.3.1 Cost-sensitive learning 60 Chapter 5 Experiments 63 5.1 Database configuration 63 5.1.1 In-House database 64 5.2 Results 65 5.2.1 Evaluation measurement 66 5.2.2 Multimodal vs. single modality 67 5.2.3 Imbalanced dataset learning 68 Chapter 6 Conclusion and future work 75 6.1 Conclusion 75 6.2 Future work 76 Bibliography 79 | |
dc.language.iso | en | |
dc.title | 以不平衡資料集之分類技術進行結合人臉與語音之身分確認 | zh_TW |
dc.title | Fusion of Face and Voice Information in Person Identity Verification with Class-Imbalanced Dataset | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳祝嵩(Chu-Song Chen) | |
dc.contributor.oralexamcommittee | 王 新民(Hsin-Min Wang),石勝文(Sheng-Wen Shih),陳文雄(Wen-Shiung Chen) | |
dc.subject.keyword | 身份確認,人臉確認,語者確認,多模式整合,支持分類器,不平衡資料集, | zh_TW |
dc.subject.keyword | person identity verification,face verification,speaker verification,multimodal fusion,SVM,class-imbalanced dataset, | en |
dc.relation.page | 87 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-27 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 730.82 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。