Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35577
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁宗賢
dc.contributor.authorTsung-Yin Linen
dc.contributor.author林宗穎zh_TW
dc.date.accessioned2021-06-13T06:59:18Z-
dc.date.available2006-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-27
dc.identifier.citation[1] Ram Viswanath, Vijay Wakharkar, Abhay Watwe, Vassou Lebonheur, “Thermal Performance Challenges from Silicon to Systems”, Intel Technology Journal Q3, 2003.
[2] http://www.intel.com.
[3] I. Mudawa and W. S. Valentine, “Determination of the local quench curve for spray –cooled metallic surfaces”, J. Heat Treating, vol. 7, no.2, pp.107-121, 1989.
[4] J. Lee, J. Kim, and K. T. Kiger, “Time- and space-resolved heat transfer characteristics of single droplet cooling using microscale heater array”, Int. J. Heat Fluid Flow, vol. 22, pp. 188-200, 2001.
[5] Ke-Hwa Lee, “Application of Genetic Algorithms to the Optimal Operation of TE(thermoelectric) Cooler Clusters”, Department of Mechanical Engineering University of Utah Salt Lake City, UT 84112..
[6] Y. Tanji , Y. Nakagawa , S. Moriya , M. Niino , M. Yasuoka , R. Sato , Y. Tada , “Thermoelectric and Heat-transfer Properties in a New-Type Module T Composed of Hamburger-Type Elements”, 16th international Conference on Thermoelectrics , 1997 .
[7] John Harley, Haim Bau, ”Fluid Flow in Micron and Submicron Size Channels”, IEEE Trans. pp.25~28 ,1989.
[8] Qu Weilin, Gh. Mohiuddin Mala, Li Dongqing, “Pressure-driven water flows in trapezoidal silicon microcahnnels”, International Journal of Heat and Mass Transfer, vol.43, pp.353~364, 2000.
[9] Srikaran Kalahasti and Yogendra K. Joshi, “Performance Characterization of a Novel Flat Plate Micro Heat Pipe Spreader”, IEEE Trans. on Component and Packaging Technologies, vol. 25, no.4, pp. 554~560, 2002.
[10] Man Lee, Man Wong and Yitshak Zohar, “Integrated Micro Heat Pipe Fabrication Technology”, Journal of Microelectromechanical Systems, vol.12 no.2, pp.138-146, 2003.
[11] J. Perkins, “Perkins Tube”, UK Patent 7059, 1836.
[12] L. P. Perkins and W. E. Buck, “Improvements in Devices for the Diffusion or Transference of Heat”, UK Patent 22272, 1892.
[13] F. W. Gay, “Heat Transfer Means”, US Patent 1725906,1929.
[14] R. S. Gaugler, “Heat Transfer Devices”, US Patent 2350348, Appl. 21 December 1942, Published 6 June 1944.
[15] G. M. Grover, “Evaporation-Condensation Heat Transfer Device”, US Patent 3229759, Appl. 2 December 1963, Published 18 January 1966.
[16] J. E. Deverall and J. E. Kemme, “Satellite Heat Pipe”, USAEC Report LA-3278, Contract W-7405-eng-36, Los Alamos Scientific Laboratory, University of California, September 1970.
[17] T. P. Cotter, “Principles and Prospects for Micro Heat Pipe”, Proc. 5th International Heat Pipe Conference, pp.328-335, Tsukuba , Japan, 1984.
[18] B. R. Babin, G. P. Peterson, and D. Wu, “Steady-State Modeling and Testing of a Micro Heat Pipe”,. Journal of Heat Transfer, vol.112, pp.595-601, 1990.
[19] A. K. Mallik, G. P. Peterson and M. H. Weichold, “On the Use of Micro Heat Pipes as an Integral Part of Semiconductor Devices”, Journal of Electric Packaging, vol.114, pp.436-442, 1992.
[20] G. P. Peterson, A. B. Duncan and M. H. Weichold, “Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers”, Journal of Heat Transfer, vol.115, pp.751-756, 1993.
[21] A. K. Mallik, G. P. Peterson and M. H. Weichold, “Fabrication of Vapor-Deposited Micro Heat Pipe Arrays as an Integral Part of Semiconductor Devices”, Microelectromechanical Systems, vol.4 no.3, pp.119-131, 1995.
[22] F. M. Gerner, J. P. Longtin, H. T. Henderson, W. H. Hsieh, P. Ramadas, W. S. Chang, “Flow and Heat Transfer Limitations in Micro Heat Pipes”, Topics in Heat Transfer, vol.3, pp.99-104, 1992.
[23] B. Badran, J. M. Albayyari, F. M. Gerner, P. Ramadas, H. T. Henderson, K. W. Baker, “Liquid-Metal Micro Heat Pipe”, American Society of Mechanical Engineers, Heat Transfer Division,vol.236, pp.71-85, 1993.
[24] B. Badran, F. M. Gerner, P. Ramadas, H. T. Henderson, K. W. Baker, “Experimental Results for Low-Temperature Silicon Micromachined Micro Heat Pipe Arrays Using Water and Methanol as Working Fluids”, Experimental Heat Transfer, pp.253-272, 1997.
[25] Linan Jiang, Man Wong, and Yitshak Zohar, “Forced Convection Boiling in a Microchannel Heat Sink”, Journal of Microelectromechanical Systems, vol.10 no.1, pp.80-87, 2001.
[26] Man Lee, Man Wong and Yitshak Zohar, “Characterization of an Integrated Micro Heat Pipe System”, Journal of Micromechanics and Microengineering, vol.13 , pp.58-64, 2003.
[27] D. A. Benson, D. R. Adkins, G. P. Peterson, R.T. Mitchell, M. R. Tuck, and D. W. Palmer, “Turning Silicon Substrates into Diamond: Micro Machining Heat Pipes”, in Proc. Adv. Design Mater. Process. Thermal Spreaders Heat Sinks Workshop, Vail, CO, Apr. 1996, pp.19-21
[28] D. A. Benson, R.T. Mitchell, M. R. Tuck, D. R. Adkins, and D. W. Palmer, “Micro-machined heat pipes in silicon MCM substrates”, Proc. IEEE Multichip module Conference, Santa Clara, CA, 1996.
[29] Xiao Ping Wu, Masataka Mochizuki, Yuji Saito, Thang Nguyen, Vijit Wuttijumnong and Di Wu, “Analyzing and Modeling on Optimized L-Ration of Evaporator Section to Condenser Section for Micro Heat Pipe Heat Sinks”, 19th IEEE Semi-Therm Symposium, pp.185-190, 2003.
[30] 黃玉年, “矽質微熱管之研製與測試”, 淡江大學機械工程學系碩士論文,1999.
[31] 黃德麟, “新型微熱管”, 淡江大學機械工程學系碩士論文,2000.
[32] 陳泓志, “輻射狀微流道熱管之研製”, 淡江大學機械工程學系碩士論文,2001.
[33] 高政群, “微型迴路式熱管之研製”, 國立清華大學動力機械工程學系碩士論文,2002.
[34] Jin Onuki, Mitsuo Satou, Susumu Murakami, Toshiaki Morita, and Tsutomu Yatsuo, “A New Low Temperature Diffusion Bonding Technology between Large-Area, High-Power Devices and Internal Mo Electrodes Using Au-Al Films”, Electron Devices, vol.44, issue 12, pp.2154-2159, 1997.
[35] H. J. Quenzer, C. Dell, B. Wagner, “Silicon–Silicon anodic–bonding with intermediate glass layers using spin-on glasses”, Micro Electro Mechanical Systems, MEMS '96, Proceedings. IEEE, The Ninth Annual International. pp.272-276, 1996.
[36] Woo-Beom Choi, Byeong-Kwon Ju, Seing-Jae Jeong, Nam-Yang Lee, Ken-Ha Koh, M. R. Haskard, Man-Young Sung, and Myung-Hwan Oh, “Anodic Bonding Technique under Low-Temperature and Low-Voltage using Evaporated Glass”, Vacuum Microelectronics Conference, pp.427-430, 1996. IVMC'96., 9th International.
[37] R. F. Wolffenbuttel, “Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond”, Sensors and Actuators A 62, pp.680-686, 1997.
[38] 楊文瑞, “微流道現地溫度量測晶片之改良製造”, 淡江大學機械工程學系碩士論文, 2001.
[39] Y. Cao, M. Cao, E. Pinilla, “Fabrication and Tear of a Filling Station for Micro/Miniature Devices”, Energy Conversion Engineering Conference, 1997. IECEC-97. Proceedings of the 32nd Intersociety, vol. 2, pp. 1509-1513, 1997.
[40] 黃文宏, “燒結式微熱管之製造與性能測試”, 國立台灣大學機械工程學研究所碩士論文, 2000.
[41] Jacob Fraden, “AIP Handbook of Modern Sensors”, 1993.
[42] 何憲龍, “微氣味蒸發與溫度感測元件晶片之研製”, 國立清華大學工程與系統科學研究所碩士論文,2002.
[43] Linan Jiang, Yuelin Wang, Man Wong, and Yirshak Zohar, “Fabrication and Characterization of a microsystem for a micro-scale heat transfer study”, Journal of Micromechanics and Microengineering, vol.9, pp.422-428, 1999.
[44] Toshiyuki Toriyama, Masakazu Yajima, and Susumu Sugiyama, “Thermoelectric Micro Power Generator Utilizing Self-Standing Polysilicon-Metal Thermopile”, Micro Electro Mechanical Systems, 2001The 14th IEEE International Conference, pp.562-565, 2001.
[45] J. A. Covington, F. Udrea, J. W. Gardner, “Resistive Gas Sensor with Integrated MOSFET Micro Hot-plate based on an Analogue SOI CMOS Process”, Sensors, 2002. Proceedings of IEEE, vol.2, pp.1389-1394, 2002.
[46] Isolde Simon, Michael Arndt, “Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications”, Sensors and Actuators A 97-98, pp.104-108, 2002.
[47] 邱宏昇, “金屬薄膜點火晶片設計模擬”, 國立台灣大學應用力學研究所碩士論文, 2004.
[48] Hong Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice-Hall, Inc., 2001.
[49] H. J. Quenzer, C. Dell, and B.Wagner, “Silicon-Silicon Anodic-Bonding with Intermediate Glass Layers Using Spin-On Glasses”, Micro Electro Mechanical Systems, 1996, MEMS '96, Proceedings. 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE, The Ninth Annual International Workshop on, pp.272-276.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35577-
dc.description.abstract現今的積體電路隨著半導體製程技術發展,電子元件的數量與密度急遽增加,伴隨而來的是單位面積高發熱量的問題,這將會讓晶片操作於較高的環境溫度,結果導致電子元件速度與穩定性大幅降低;以2004年Intel發表的CPU而言,單位面積發熱率可達7.80W/cm2,總發熱量高達109.6W[2];未來如何能有效將熱能導出並且提高散熱效能,是積體電路發展刻不容緩的課題。
目前電腦中最常使用的散熱方法為均熱片與風扇結合的裝置,惟此種方法提供之散熱能力已經面臨臨界點,2004年Intel的CPU發展進度即出現因散熱效能不足而受阻。熱管為另一種常見的散熱裝置,熱管利用相變化提供優異的散熱能力,小型的熱管已經應用在筆記型電腦中。在1984年Cotter 提出微熱管 (Micro Heat Pipe) 可做為電子元件散熱的方式後[17],關於微熱管的理論分析與實驗量測在二十年來如雨後春筍般被提出,惟在微尺度之流體熱傳行為仍存在諸多尚待探討的議題,尤其對於重要的流道內部的溫度場分佈數據,一直要到最近兩、三年才有Zohar [10, 26]從事微熱管現地溫度量測與數據分析。
本研究藉著微機電製程之體型及表面微加工技術研製微熱管晶片,其流道寬度為150μm、長度為15mm;同時首度將白金熱阻式微溫度感測器整合於微熱管管壁上,藉以量測微熱管內部的現地溫度分布,並藉以估算所能提供的散熱能力,希望能對於未來電子元件散熱技術之進展有所貢獻。
本實驗著重的課題有以下四點:一、試著將微加熱器、微熱管與微溫度感測器整合在同一測試晶片上。二、研究陽極接合及環氧樹脂膠黏技術應用於結合4吋(100)矽晶圓與Pyrex7740玻璃的可能性。三、使用簡單且價格低廉的方法進行真空注水。四、量測微熱管在不同施加功率下的溫度分佈並分析熱傳性能。
本實驗使用微加熱器模擬微熱點長時間發熱的情形,用微熱管作為微型散熱元件,測試不同填充率的晶片軸向溫度的分佈;沒有填充工作流體以作為參考用的Chip_0在功率為800mW時即燒毀,有微熱管作動的晶片在功率為1W的情況下仍能運作;接著用重力輔助工作流體、在冷凝端加上熱沉兩種方式進行實驗,發覺兩種方式都對於微熱管作動都有所幫助;雖然加上微熱管的實驗晶片最大熱傳係數分別只有8.333、4.545 W/mK,但是比起未填充工作流體的晶片卻提升了3至五倍,未來希望能以改變接合方式來改善微熱管的性能。
zh_TW
dc.description.abstractDue to the improvement of semiconductor manufacturing techniques, the quantities and densities of electric components on a single chip increase quickly. The heat dissipated of miniaturized make chips to be operated in higher temperature which will decrease not only the speed of electric components but also the stability of the chips. Taking the CPU, “Intel Pentium 4 Processor Extreme Edition on 0.13 Micron Process in the 775-land Package” published in 2004 for example, its thermal design power can reach about 109.6 Watt. To remove heat generated inside an operating chip becomes more and more important from now on.
The most popular electric cooling devices are fins and fans now, but those devices face the critical point of the ability to transfer heat from local hot spot. In 2004 Intel slows down their new products of CPU, and can not find a suitable device to provide cooling is one of the reasons. Heat pipe is one of the well known cooling devices, and some of them have been integrated with Notebook cooling module. Since Cotter suggest that Micro Heat Pipe could a new electric cooling device in the future, experiments and researches are proposed at the past 20 years. However, the research about how the working fluid inside micro heat pipes still have a lot of issues to be worked out.
In this experiment I fabricate micro heat pipe chip using surface machining and bulk machining of MEMS manufacturing. The the channel of micro heat pipe is 150μm in width, and 15mm in length. This is the first time to fabricate a micro heat pipe chip integrated with micro heater and In-situ micro temperature sensor array. I hope that this research can promote the development of the electric cooling industry.
There are four subjects in this experiment: First, integrated micro heater and micro heat pipe and micro temperature sensors in one single chip; Second, combining the glass chip and silicon chip using anodic bonding and epoxy pasting; Third, filling working fluid in a convenient way; Fourth, analyzing the behavior of the micro heat pipe under different applied works.
I use micro heater to simulate hot spot, and use micro heat pipe as a cooling device to find out the performance of this design. Chip_0 which no working fluid is filled burned out when 800mW is applied on the heater; however, Chip_1 and Chip_2 which is filled several working fluids can work when 1W is applied on the heater. Then, gravity and heat sink are use to improve the performance of the micro heat pipe, and both of them are workable. Although the maximum thermal conductivity of Chip_1 and Chip_2 are about 8.333 and 4.545 W/mK, but they improve the maximum thermal conductivity about 3 to 5times than Chip_0.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:59:18Z (GMT). No. of bitstreams: 1
ntu-94-R92543054-1.pdf: 2348386 bytes, checksum: 74961a36d45af37e7aee5da46f894e1c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目次 頁次
摘要……………………………………………………………… I
目錄…………………………………………………………..……...V
附圖目錄…………………………………………………………….IX
附表目錄…………………………………………………………….XV
符號說明……………………………………………………………XVI
第一章 序論 1
1.1研究動機 1
1-2文獻回顧 5
1-2.1 熱管 6
1-2.2 微熱管 7
1-2.3封裝技術 9
1-2.4 真空注水 11
1.2-5 溫度量測 12
1.2-6 加熱器 14
1-3 研究目的 15
1-4 本文內容 16
第二章 熱管原理與晶片設計 27
2-1 熱管原理 27
2-1.1 熱管操作原理 27
2-1.2 熱管作動限制 28
2-2.1 晶片架構 33
2-2.2 注入口、注入流道與流道 33
2-2.3 溫度量測單元與訊號線 36
2-2.4 加熱單元 39
2-2.5 光罩設計 41
第三章 微機電製程流程 61
3-1 前言 61
3-2 第一道光罩製程 61
3-2.1 晶圓清潔 62
3-2.2濕氧化製程 62
3-2.3 黃光製程 64
3-2.4 二氧化矽濕蝕刻(Wet Etch) 69
3-2.5 矽濕蝕刻 71
3-2.6 晶圓切割 73
3-3 第二道光罩製程 74
3-3.1 晶圓清潔與黃光製程 74
3-3.2 電子束蒸鍍(E-Beam Evaporator) 75
3-3.3 掀舉法(Lift-Off Method) 78
3-4 第三道光罩製程 80
3-4.1晶圓清潔與黃光對準 81
3-4.2 熱蒸鍍(Thermal Evaporator) 82
3-4.3 掀舉法、蝕刻法與晶圓切割 84
3-5 接合前處理 85
3-5.1 矽晶片清潔 86
3-5.2 玻璃晶片鑽孔與清潔 86
第四章 封裝接合與真空注水 103
4-1 溫度校正 103
4-2 封裝接合 104
4-2.1 陽極接合 105
4-2.2有氧化層的陽極接合 106
4-2.3環氧樹脂膠黏 107
4-2.4 管路連接 108
4-3真空注水 109
4-3.1 抽真空 110
4-3.2填充工作流體 110
4-3.3密封 111
第五章 實驗結果與討論 130
5-1 實驗架設 130
5-2 實驗結果 130
5-2.1 晶片平放之性能分析 130
5-2.2 晶片直立之性能分析 133
5-2.3 加上熱沉之性能分析 135
5-3 討論 136
第六章 結論與未來展望 146
6-1 結論 146
6-2 未來展望 149
參考文獻 152
附圖目錄
頁次
FIG.1- 1 微處理器消耗功率與熱通量關係圖[1] 17
FIG.1- 2 現在常見的散熱元件[2] 17
FIG.1- 3 均熱片搭配自然對流散熱示意圖[1] 17
FIG.1- 4 強制對流搭配均熱片示意圖[2] 18
FIG.1- 5 小型熱管運用在筆記型電腦示意圖[1] 18
FIG.1- 6 三角形流道剖面示意圖[38] 19
FIG.1- 7 ZOHAR等所設計結合各項感測器的微熱管陣列[10] 19
FIG.1- 8 BENSON等用微機電製程製造的毛細結構[28] 20
FIG.1- 9 平板式微熱管陣列的毛細結構[9] 20
FIG.1- 10 六角星形微熱管作動示意圖[31] 21
FIG.1- 11 平板式熱管作動示意圖[31] 21
FIG.1- 12 輻射狀微流道熱管作動示意圖[32] 22
FIG.1- 13 CAO等提出的T-JUNCTION工作流體填充法[39] 22
FIG.1- 14 黃德麟所使用的真空注水系統示意圖[31] 23
FIG.1- 15 單一注入孔微熱管示意圖[26] 23
FIG.1- 16 單一注入孔微熱管真空注水系統架構[26] 23
FIG.1- 17 成對注入孔微熱管示意圖[26] 24
FIG.1- 18 應用半導體元件特性作為熱阻式溫度感測器[10] 24
FIG.1- 19 TORIYAMA等提出的新型熱電堆[44] 25
FIG.1- 20 紅外線測溫儀量測原理[41] 25
FIG.1- 21 鉑-加熱器薄膜應用在氫氣濃度感測器[46] 26
FIG.1- 22 金屬薄膜點火電橋成品 26
FIG.2- 1 熱管蒸發段、絕熱段與冷凝段示意圖[1] 43
FIG.2- 2 熱管毛細結構與工作流體示意圖[2] 43
FIG.2- 3 蒸汽留在熱管內部情形[21] 44
FIG.2- 4 熱管操作溫度範圍示意圖[31] 44
FIG.2- 5 矽晶片半成品示意圖 45
FIG.2- 6 玻璃晶片半成品示意圖 46
FIG.2- 7 微熱管系統晶片整體架構圖 47
FIG.2- 8 注入孔與流道示意圖 48
FIG.2- 9 對於注入流道的各種設計示意圖 51
FIG.2- 10 利用注入流道高度變化簡化封裝的想法 52
FIG.2- 11 不同注入流道經過蝕刻後的結果 53
FIG.2- 12 切割邊的不平整會造成訊號線的斷路[10] 53
FIG.2- 13 利用濕蝕刻形成溝槽改善切割邊不平整的問題 54
FIG.2- 14 玻璃晶圓上對準記號示意圖 54
FIG.2- 15 溫度感測單元示意圖 55
FIG.2- 16 訊號線設計示意圖 55
FIG.2- 17 加熱單元示意圖 55
FIG.2- 18 對矽晶圓加工的光罩 57
FIG.2- 19 第一道光罩成品拍照 57
FIG.2- 20 玻璃晶圓的第一道光罩 58
FIG.2- 21 玻璃晶圓的第二道光罩 58
FIG.2- 22 第二道光罩成品拍照 59
FIG.2- 23 第三道光罩(掀舉法)成品拍照 59
FIG.2- 24 第三道光罩(蝕刻法)成品拍照 60
FIG.3- 1(A) 第一道光罩的製程步驟(包括黃光、蝕刻製程) 88
FIG.3- 2 過度顯影使得圖案邊緣失真的情況 91
FIG.3- 3 經過第一道光罩BOE蝕刻後的晶圓 91
FIG.3- 4 用長柄杓固定晶圓進行矽蝕刻 91
FIG.3- 5 蝕刻純矽的實驗架設 92
FIG.3- 6 蝕刻純矽時會有白色煙霧產生 92
FIG.3- 7 完成第一道光罩製程的矽晶片 93
FIG.3- 8 光阻經過硬烤掀舉法失敗的情況 93
FIG.3- 9 鉑溫度感測單元成品 94
FIG.3- 10 鉑對準記號成品 94
FIG.3- 11 用棉花棒去光阻造成金薄膜剝離 95
FIG.3- 12 光阻曝光後與溫度感測單元相對位置 95
FIG.3- 13 抽真空前要記得更換觀察窗的玻璃 95
FIG.3- 14 用鎢舟盛放金靶材 96
FIG.3- 15 用鉻棒可以降低施加功率避免光阻硬烤 96
FIG.3- 16 靶材熔融時會發出亮光 97
FIG.3- 17 蒸鍍完成的晶圓 97
FIG.3- 18 完成第二道光罩掀舉法後的對準記號 98
FIG.3- 19 金訊號線覆蓋在鉑溫度感測單元的情形 98
FIG.3- 20 金加熱單元完成掀舉法的情形 98
FIG.3- 21 切割完成的玻璃晶片 99
FIG.3- 22 使用位移平台輔助鑽孔 99
FIG.3- 23 完成鑽孔的半成品 100
FIG.4- 1 溫度校正實驗架設圖 112
FIG.4- 2 恆溫水槽校正溫度時的架設 113
FIG.4- 3 實驗對照組CHIP_0的R-T關係圖 114
FIG.4- 4 實驗對照組CHIP_0的△R-△T關係圖 114
FIG.4- 5 實驗晶片CHIP_1的R-T關係圖 115
FIG.4- 6 實驗晶片CHIP_1的△R-△T關係圖 115
FIG.4- 7 實驗晶片CHIP_2的R-T關係圖 116
FIG.4- 8 實驗晶片CHIP_2的△R-△T關係圖 116
FIG.4- 9 陽極接合示意圖 117
FIG.4- 10 墊片的編號 117
FIG.4- 11 陽極接合後的微熱管系統晶片 118
FIG.4- 12 膠黏封裝後的微熱管系統晶片 118
FIG.4- 13 膠黏接合的結果接近平板式微熱管 119
FIG.4- 14 用塑鋼土黏合毛細管的成品拍照 119
FIG.4- 15 毛細管連接Y型管後的成品拍照 120
FIG.4- 16 用塑鋼土黏合不鏽鋼管的成品拍照 120
FIG.4- 17 真空注水步驟(一):抽真空 121
FIG.4- 18 真空注水步驟(二):填充工作流體 122
FIG.4- 19 真空注水步驟(三):密封 123
FIG.4- 20 真空注水實驗設備拍照 124
FIG.4- 21 晶片軟管與真空管路用球閥相連接 124
FIG.4- 22 抽真空至5×10-2TORR 125
FIG.4- 23 將針頭推入管路內填充工作流體 125
FIG.4- 24 用冰、水共存輔助工作流體冷凝 126
FIG.4- 25 用平口鉗夾緊不鏽鋼管 126
FIG.4- 26 在斷口處塗上助銲劑後用錫銲加以密封 127
FIG.4- 27 微熱管系統晶片成品 127
FIG.5-1 實驗擺設 139
FIG.5-2 用保麗龍平板減少表面自然對流 139
FIG.5-3 CHIP_0的Q-T關係圖 140
FIG.5-4 CHIP_0的
dc.language.isozh-TW
dc.title整合加熱器與現地溫度感測器之微熱管系統晶片研製zh_TW
dc.titleA Micro Heat Pipe Chip Integrated with Micro Heater and In-situ Temperature Sensor Arrayen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王安邦,沈弘俊
dc.subject.keyword微熱管,現地溫度量測,微加熱器,zh_TW
dc.subject.keywordMicro Heat Pipe,en
dc.relation.page157
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
2.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved