請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35543完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭應誠 | |
| dc.contributor.author | Cheng-Fen lai | en |
| dc.contributor.author | 賴政分 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:57:40Z | - |
| dc.date.available | 2005-08-01 | |
| dc.date.copyright | 2005-08-01 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-28 | |
| dc.identifier.citation | Alao, J. P., Lam, E. W., Ali, S., Buluwela, L., Bordogna, W., Lockey, P., Varshochi, R., Stavropoulou, A. V., Coombes, R. C., and Vigushin, D. M. (2004). Histone deacetylase inhibitor trichostatin A represses estrogen receptor alpha-dependent transcription and promotes proteasomal degradation of cyclin D1 in human breast carcinoma cell lines. Clin Cancer Res 10, 8094-8104.
Astrand, C., Klenka, T., Wrange, O., and Belikov, S. (2004). Trichostatin A reduces hormone-induced transcription of the MMTV promoter and has pleiotropic effects on its chromatin structure. Eur J Biochem 271, 1153-1162. Berger, S. L. (2002). Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12, 142-148. Biggin, M. D., and Tjian, R. (1988). Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell 53, 699-711. Bohley, P., and Seglen, P. O. (1992). Proteases and proteolysis in the lysosome. Experientia 48, 151-157. Butler, L. M., Agus, D. B., Scher, H. I., Higgins, B., Rose, A., Cordon-Cardo, C., Thaler, H. T., Rifkind, R. A., Marks, P. A., and Richon, V. M. (2000). Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 60, 5165-5170. Chai, F., Evdokiou, A., Young, G. P., and Zalewski, P. D. (2000). Involvement of p21(Waf1/Cip1) and its cleavage by DEVD-caspase during apoptosis of colorectal cancer cells induced by butyrate. Carcinogenesis 21, 7-14. Chen, H., Toyooka, S., Gazdar, A. F., and Hsieh, J. T. (2003). Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines. J Biol Chem 278, 3121-3130. Christensen, M. A., Zhou, W., Qing, H., Lehman, A., Philipsen, S., and Song, W. (2004). Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. Mol Cell Biol 24, 865-874. Daggett, M. A., Rice, D. A., and Heckert, L. L. (2000). Expression of steroidogenic factor 1 in the testis requires an E box and CCAAT box in its promoter proximal region. Biol Reprod 62, 670-679. Danbara, M., Kameyama, K., Higashihara, M., and Takagaki, Y. (2002). DNA methylation dominates transcriptional silencing of Pax5 in terminally differentiated B cell lines. Mol Immunol 38, 1161-1166. Danielian, P. S., White, R., Lees, J. A., and Parker, M. G. (1992). Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. Embo J 11, 1025-1033. De Santa Barbara, P., Bonneaud, N., Boizet, B., Desclozeaux, M., Moniot, B., Sudbeck, P., Scherer, G., Poulat, F., and Berta, P. (1998). Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene. Mol Cell Biol 18, 6653-6665. Dehm, S. M., and Bonham, K. (2004). SRC gene expression in human cancer: the role of transcriptional activation. Biochem Cell Biol 82, 263-274. Dehm, S. M., Hilton, T. L., Wang, E. H., and Bonham, K. (2004). SRC proximal and core promoter elements dictate TAF1 dependence and transcriptional repression by histone deacetylase inhibitors. Mol Cell Biol 24, 2296-2307. Duan, H., Heckman, C. A., and Boxer, L. M. (2005). Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 25, 1608-1619. Ennis, H. L., and Lubin, M. (1964). Cycloheximide: Aspects Of Inhibition Of Protein Synthesis In Mammalian Cells. Science 146, 1474-1476. Faber, P. W., van Rooij, H. C., Schipper, H. J., Brinkmann, A. O., and Trapman, J. (1993). Two different, overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter. The role of Sp1. J Biol Chem 268, 9296-9301. Fischle, W., Wang, Y., and Allis, C. D. (2003). Histone and chromatin cross-talk. Curr Opin Cell Biol 15, 172-183. Gray, S. G., and Ekstrom, T. J. (2001). The human histone deacetylase family. Exp Cell Res 262, 75-83. Gronroos, E., Hellman, U., Heldin, C. H., and Ericsson, J. (2002). Control of Smad7 stability by competition between acetylation and ubiquitination. Mol Cell 10, 483-493. Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389, 349-352. Gui, C. Y., Ngo, L., Xu, W. S., Richon, V. M., and Marks, P. A. (2004). Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A 101, 1241-1246. Guo, I. C., Tsai, H. M., and Chung, B. C. (1994). Actions of two different cAMP-responsive sequences and an enhancer of the human CYP11A1 (P450scc) gene in adrenal Y1 and placental JEG-3 cells. J Biol Chem 269, 6362-6369. Hanley, N. A., Ikeda, Y., Luo, X., and Parker, K. L. (2000). Steroidogenic factor 1 (SF-1) is essential for ovarian development and function. Mol Cell Endocrinol 163, 27-32. Harris, A. N., and Mellon, P. L. (1998). The basic helix-loop-helix, leucine zipper transcription factor, USF (upstream stimulatory factor), is a key regulator of SF-1 (steroidogenic factor-1) gene expression in pituitary gonadotrope and steroidogenic cells. Mol Endocrinol 12, 714-726. Hassig, C. A., and Schreiber, S. L. (1997). Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol 1, 300-308. Heruth, D. P., Zirnstein, G. W., Bradley, J. F., and Rothberg, P. G. (1993). Sodium butyrate causes an increase in the block to transcriptional elongation in the c-myc gene in SW837 rectal carcinoma cells. J Biol Chem 268, 20466-20472. Honda, S., Morohashi, K., Nomura, M., Takeya, H., Kitajima, M., and Omura, T. (1993). Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J Biol Chem 268, 7494-7502. Hong, L., Schroth, G. P., Matthews, H. R., Yau, P., and Bradbury, E. M. (1993). Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 'tail' to DNA. J Biol Chem 268, 305-314. Hu, J., and Colburn, N. H. (2005). Histone deacetylase inhibition down-regulates cyclin D1 transcription by inhibiting nuclear factor-kappaB/p65 DNA binding. Mol Cancer Res 3, 100-109. Hu, M. C., Chou, S. J., Huang, Y. Y., Hsu, N. C., Li, H., and Chung, B. C. (1999). Tissue-specific, hormonal, and developmental regulation of SCC-LacZ expression in transgenic mice leads to adrenocortical zone characterization. Endocrinology 140, 5609-5618. Hu, M. C., Guo, I. C., Lin, J. H., and Chung, B. C. (1991). Regulated expression of cytochrome P-450scc (cholesterol-side-chain cleavage enzyme) in cultured cell lines detected by antibody against bacterially expressed human protein. Biochem J 274 (Pt 3), 813-817. Hu, M. C., Hsu, H. J., Guo, I. C., and Chung, B. C. (2004). Function of Cyp11a1 in animal models. Mol Cell Endocrinol 215, 95-100. Iizuka, M., and Smith, M. M. (2003). Functional consequences of histone modifications. Curr Opin Genet Dev 13, 154-160. Imai, S., Armstrong, C. M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800. Ismail, P. M., Lu, T., and Sawadogo, M. (1999). Loss of USF transcriptional activity in breast cancer cell lines. Oncogene 18, 5582-5591. Jacob, A. L., Lund, J., Martinez, P., and Hedin, L. (2001). Acetylation of steroidogenic factor 1 protein regulates its transcriptional activity and recruits the coactivator GCN5. J Biol Chem 276, 37659-37664. Jones, S. (2004). An overview of the basic helix-loop-helix proteins. Genome Biol 5, 226. Kadowaki, M., and Kanazawa, T. (2003). Amino acids as regulators of proteolysis. J Nutr 133, 2052S-2056S. Katsumata, N., Ohtake, M., Hojo, T., Ogawa, E., Hara, T., Sato, N., and Tanaka, T. (2002). Compound heterozygous mutations in the cholesterol side-chain cleavage enzyme gene (CYP11A) cause congenital adrenal insufficiency in humans. J Clin Endocrinol Metab 87, 3808-3813. Khochbin, S., Verdel, A., Lemercier, C., and Seigneurin-Berny, D. (2001). Functional significance of histone deacetylase diversity. Curr Opin Genet Dev 11, 162-166. Klionsky, D. J., and Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290, 1717-1721. Korkmaz, C. G., Fronsdal, K., Zhang, Y., Lorenzo, P. I., and Saatcioglu, F. (2004). Potentiation of androgen receptor transcriptional activity by inhibition of histone deacetylation--rescue of transcriptionally compromised mutants. J Endocrinol 182, 377-389. Kramer, O. H., Zhu, P., Ostendorff, H. P., Golebiewski, M., Tiefenbach, J., Peters, M. A., Brill, B., Groner, B., Bach, I., Heinzel, T., and Gottlicher, M. (2003). The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. Embo J 22, 3411-3420. Laribee, R. N., and Klemsz, M. J. (2001). Loss of PU.1 expression following inhibition of histone deacetylases. J Immunol 167, 5160-5166. Lee, D. Y., Hayes, J. J., Pruss, D., and Wolffe, A. P. (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73-84. Letovsky, J., and Dynan, W. S. (1989). Measurement of the binding of transcription factor Sp1 to a single GC box recognition sequence. Nucleic Acids Res 17, 2639-2653. Li, L. A., Chiang, E. F., Chen, J. C., Hsu, N. C., Chen, Y. J., and Chung, B. C. (1999). Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol Endocrinol 13, 1588-1598. Li, M., Chen, D., Shiloh, A., Luo, J., Nikolaev, A. Y., Qin, J., and Gu, W. (2002). Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648-653. Liu, M. M., Albanese, C., Anderson, C. M., Hilty, K., Webb, P., Uht, R. M., Price, R. H., Jr., Pestell, R. G., and Kushner, P. J. (2002). Opposing action of estrogen receptors alpha and beta on cyclin D1 gene expression. J Biol Chem 277, 24353-24360. Lu, J., Lee, W., Jiang, C., and Keller, E. B. (1994). Start site selection by Sp1 in the TATA-less human Ha-ras promoter. J Biol Chem 269, 5391-5402. Luo, R. X., and Dean, D. C. (1999). Chromatin remodeling and transcriptional regulation. J Natl Cancer Inst 91, 1288-1294. Luo, X., Ikeda, Y., and Parker, K. L. (1994). A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481-490. Luo, X., Ikeda, Y., Schlosser, D. A., and Parker, K. L. (1995). Steroidogenic factor 1 is the essential transcript of the mouse Ftz-F1 gene. Mol Endocrinol 9, 1233-1239. Mantovani, R. (1999). The molecular biology of the CCAAT-binding factor NF-Y. Gene 239, 15-27. Marks, P. A., Richon, V. M., and Rifkind, R. A. (2000). Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92, 1210-1216. Miller, A. A., Kurschel, E., Osieka, R., and Schmidt, C. G. (1987). Clinical pharmacology of sodium butyrate in patients with acute leukemia. Eur J Cancer Clin Oncol 23, 1283-1287. Morohashi, K., Tsuboi-Asai, H., Matsushita, S., Suda, M., Nakashima, M., Sasano, H., Hataba, Y., Li, C. L., Fukata, J., Irie, J., et al. (1999). Structural and functional abnormalities in the spleen of an mFtz-F1 gene-disrupted mouse. Blood 93, 1586-1594. Nan, X., Ng, H. H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N., and Bird, A. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386-389. Nomura, M., Bartsch, S., Nawata, H., Omura, T., and Morohashi, K. (1995). An E box element is required for the expression of the ad4bp gene, a mammalian homologue of ftz-f1 gene, which is essential for adrenal and gonadal development. J Biol Chem 270, 7453-7461. Norton, V. G., Marvin, K. W., Yau, P., and Bradbury, E. M. (1990). Nucleosome linking number change controlled by acetylation of histones H3 and H4. J Biol Chem 265, 19848-19852. Novogrodsky, A., Dvir, A., Ravid, A., Shkolnik, T., Stenzel, K. H., Rubin, A. L., and Zaizov, R. (1983). Effect of polar organic compounds on leukemic cells. Butyrate-induced partial remission of acute myelogenous leukemia in a child. Cancer 51, 9-14. Nye, J. A., Petersen, J. M., Gunther, C. V., Jonsen, M. D., and Graves, B. J. (1992). Interaction of murine ets-1 with GGA-binding sites establishes the ETS domain as a new DNA-binding motif. Genes Dev 6, 975-990. O'Neill, L. P., and Turner, B. M. (1995). Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. Embo J 14, 3946-3957. Parker, K. L., and Schimmer, B. P. (1997). Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 18, 361-377. Pellizzaro, C., Coradini, D., Daniotti, A., Abolafio, G., and Daidone, M. G. (2001). Modulation of cell cycle-related protein expression by sodium butyrate in human non-small cell lung cancer cell lines. Int J Cancer 91, 654-657. Rahman, M. M., Kukita, A., Kukita, T., Shobuike, T., Nakamura, T., and Kohashi, O. (2003). Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 101, 3451-3459. Sadovsky, Y., Crawford, P. A., Woodson, K. G., Polish, J. A., Clements, M. A., Tourtellotte, L. M., Simburger, K., and Milbrandt, J. (1995). Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci U S A 92, 10939-10943. Saemann, M. D., Bohmig, G. A., Osterreicher, C. H., Burtscher, H., Parolini, O., Diakos, C., Stockl, J., Horl, W. H., and Zlabinger, G. J. (2000). Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. Faseb J 14, 2380-2382. Scherrer, S. P., Rice, D. A., and Heckert, L. L. (2002). Expression of steroidogenic factor 1 in the testis requires an interactive array of elements within its proximal promoter. Biol Reprod 67, 1509-1521. Schumacher, M., Akwa, Y., Guennoun, R., Robert, F., Labombarda, F., Desarnaud, F., Robel, P., De Nicola, A. F., and Baulieu, E. E. (2000). Steroid synthesis and metabolism in the nervous system: trophic and protective effects. J Neurocytol 29, 307-326. Scott, E. W., Simon, M. C., Anastasi, J., and Singh, H. (1994). Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573-1577. Shen, J. H., and Ingraham, H. A. (2002). Regulation of the orphan nuclear receptor steroidogenic factor 1 by Sox proteins. Mol Endocrinol 16, 529-540. Sher, G. D., Ginder, G. D., Little, J., Yang, S., Dover, G. J., and Olivieri, N. F. (1995). Extended therapy with intravenous arginine butyrate in patients with beta-hemoglobinopathies. N Engl J Med 332, 1606-1610. Sirito, M., Lin, Q., Maity, T., and Sawadogo, M. (1994). Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res 22, 427-433. Steinke, J. W., Hodsdon, W., Parenti, S., Ostraat, R., Lutz, R., Borish, L., and Hagman, J. (2004). Identification of an Sp factor-dependent promoter in GCET, a gene expressed at high levels in germinal center B cells. Mol Immunol 41, 1145-1153. Taketo, M., Parker, K. L., Howard, T. A., Tsukiyama, T., Wong, M., Niwa, O., Morton, C. C., Miron, P. M., and Seldin, M. F. (1995). Homologs of Drosophila Fushi-Tarazu factor 1 map to mouse chromosome 2 and human chromosome 9q33. Genomics 25, 565-567. Tani, M., Ito, J., Nishioka, M., Kohno, T., Tachibana, K., Shiraishi, M., Takenoshita, S., and Yokota, J. (2004). Correlation between histone acetylation and expression of the MYO18B gene in human lung cancer cells. Genes Chromosomes Cancer 40, 146-151. Tong, X., Yin, L., Joshi, S., Rosenberg, D. W., and Giardina, C. (2005). Cyclooxygenase-2 regulation in colon cancer cells: modulation of RNA polymerase II elongation by histone deacetylase inhibitors. J Biol Chem 280, 15503-15509. Tremblay, J. J., and Viger, R. S. (1999). Transcription factor GATA-4 enhances Mullerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Mol Endocrinol 13, 1388-1401. Tsuji, N., and Kobayashi, M. (1978). Trichostatin C, a glucopyranosyl hydroxamate. J Antibiot (Tokyo) 31, 939-944. Tsuji, N., Kobayashi, M., Nagashima, K., Wakisaka, Y., and Koizumi, K. (1976). A new antifungal antibiotic, trichostatin. J Antibiot (Tokyo) 29, 1-6. Umesono, K., and Evans, R. M. (1989). Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57, 1139-1146. Urnov, F. D. (2003). Chromatin remodeling as a guide to transcriptional regulatory networks in mammals. J Cell Biochem 88, 684-694. Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane- Robinson, C., Allis, C. D., and Workman, J. L. (1996). Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Embo J 15, 2508-2518. Vigushin, D. M., Ali, S., Pace, P. E., Mirsaidi, N., Ito, K., Adcock, I., and Coombes, R. C. (2001). Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 7, 971-976. Watanabe, K., Clarke, T. R., Lane, A. H., Wang, X., and Donahoe, P. K. (2000). Endogenous expression of Mullerian inhibiting substance in early postnatal rat sertoli cells requires multiple steroidogenic factor-1 and GATA-4-binding sites. Proc Natl Acad Sci U S A 97, 1624-1629. Weidle, U. H., and Grossmann, A. (2000). Inhibition of histone deacetylases: a new strategy to target epigenetic modifications for anticancer treatment. Anticancer Res 20, 1471-1485. Widmer, J., Fassihi, K. S., Schlichter, S. C., Wheeler, K. S., Crute, B. E., King, N., Nutile-McMenemy, N., Noll, W. W., Daniel, S., Ha, J., et al. (1996). Identification of a second human acetyl-CoA carboxylase gene. Biochem J 316 (Pt 3), 915-922. Woodson, K. G., Crawford, P. A., Sadovsky, Y., and Milbrandt, J. (1997). Characterization of the promoter of SF-1, an orphan nuclear receptor required for adrenal and gonadal development. Mol Endocrinol 11, 117-126. Xia, T., Zeng, G., Gao, L., and Yu, R. K. (2005). Sp1 and AP2 enhance promoter activity of the mouse GM3-synthase gene. Gene 351, 109-118. Yang, J., Kawai, Y., Hanson, R. W., and Arinze, I. J. (2001). Sodium butyrate induces transcription from the G alpha(i2) gene promoter through multiple Sp1 sites in the promoter and by activating the MEK-ERK signal transduction pathway. J Biol Chem 276, 25742-25752. Yoshida, M., Horinouchi, S., and Beppu, T. (1995). Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17, 423-430. Yoshida, M., Kijima, M., Akita, M., and Beppu, T. (1990). Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265, 17174-17179. Yoshida, M., Nomura, S., and Beppu, T. (1987). Effects of trichostatins on differentiation of murine erythroleukemia cells. Cancer Res 47, 3688-3691. Yu, Z. K., Gervais, J. L., and Zhang, H. (1998). Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci U S A 95, 11324-11329. Zhao, L., Bakke, M., Hanley, N. A., Majdic, G., Stallings, N. R., Jeyasuria, P., and Parker, K. L. (2004). Tissue-specific knockouts of steroidogenic factor 1. Mol Cell Endocrinol 215, 89-94. Zhao, Q., Cumming, H., Cerruti, L., Cunningham, J. M., and Jane, S. M. (2004). Site-specific acetylation of the fetal globin activator NF-E4 prevents its ubiquitination and regulates its interaction with the histone deacetylase, HDAC1. J Biol Chem 279, 41477-41486. Zhou, T., and Chiang, C. M. (2002). Sp1 and AP2 regulate but do not constitute TATA-less human TAF(II)55 core promoter activity. Nucleic Acids Res 30, 4145-4157. Zhu, W. G., and Otterson, G. A. (2003). The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anti-Canc Agents 3, 187-199. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35543 | - |
| dc.description.abstract | 類固醇轉錄因子(Steroidogenic Factor1, SF-1)是孤核受體(orphan nuclear receptor)的一種,能調控許多類固醇生成酵素基因的表現,對腦下垂體、下視丘、腎上腺及性線的發育及分化非常重要。在小鼠與人的腎上腺皮質腫瘤細胞內(Y1 and H295 cells),使用組蛋白去乙醯基轉移酵素抑制劑 ,如Trichostatin A和Sodium butyrate,能增加Histone 4的乙醯化 (Acetylation),卻減少SF-1與其下游膽固醇側鏈分切酵素(P450scc)的表現,這個抑制現象與劑量和作用時間成正比。報導基因表現分析的實驗中,TSA抑制了SF-1啟動子的活性;TSA能增加外源性SF-1蛋白質的表現,但減少內源性SF-1蛋白質的表現量。表示HDAC 抑制劑是透過SF-1啟動子來控制基因轉錄的表現。許多文獻指出,SF-1啟動子上面,具有一個重要的調控序列,E-box,與其結合的兩個主要蛋白質為上游刺激因子一及二 (Upstream Stimulatory Factor 1 and USF2)。膠體電泳位移分析 (EMSA) 結果表示,HDAC 抑制劑同時減少SF-1啟動子上調控單位(E box and CCAAT box)與其轉錄因子間的結合,也減少了USF1和USF2蛋白質的表現量。TSA抑制了P450scc及USF2的mRNA,但卻增加了USF1的mRNA;此結果與減少的USF1蛋白質相矛盾,故使用HDAC 抑制劑可能會影響特定蛋白質的穩定性並加速其降解。 | zh_TW |
| dc.description.abstract | The orphan nuclear receptor steroidogenic factor 1 (SF-1, A4BP, or NR5A1) is a key transcription factor that regulates the expression of many steroidogenic enzymes. It has also been demonstrated to play an important role in the development and differentiation of hypothalamus, pituitary, adrenal glands, and gonads. Being such an important factor, the regulation of SF-1 expression is highly investigated. We used inhibitors of histone deacetylases which generally activate gene expression and used as anticancer drugs such as trichostatin A and sodium butyrate. Histone deacetylase inhibitors although increased the acetylation of Histone 4, reduced the protein content of SF1 and cytochrome P450 side-chain cleavage enzyme, a SF-1 controlled gene, in a dose and time-dependent manner in adrenocorticol cells, Y1 and H295 cells. In a reporter assay, TSA reduced the SF-1 promoter activity. In Y1 stable clone, which expresses SF-1-HA driven by CMV promoter, TSA increased exogenous SF-1-HA protein, however, reduced endogenous SF-1 protein. Both results indicate that SF-1 is transcriptionally down-regulated by these inhibitors. TSA reduced binding of E-box and CCAAT box binding factor to SF-1 promoter in Electorphoretic Mobility Shift Assay. The E-box binding proteins, USF1 (upstream stimulatory factor 1) and USF2 were down-regulated by TSA as well as SF-1. These results suggest that TSA-inhibited expression of SF-1 may provide insight to uncover the regulatory mechanism of SF-1 gene. Interesting, we found that TSA treatment increases mRNA of SCC and USF2 but reduces USF1 mRNA in Quantitative-Real-Time PCR. Increased USF1 mRNA and reduced USF1 protein content after TSA treatment provides a new association of protein stability and acetylation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:57:40Z (GMT). No. of bitstreams: 1 ntu-94-R92629015-1.pdf: 1240401 bytes, checksum: 4c7ff5edd8eb85842937090b680ec6d5 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Table of Contents
Abbreviation 1 Abstract in Chinese 2 Abstract 3 Introduction 4 I、Steroid hormones 4 Classes & Functions 4 CYP11A1 (P450scc) 4 II、Steroidogenic Factor 1 5 Characterization 5 Structure 5 Regulation 6 III、Transcriptional regulation 7 Chromatin structure & Histone modification 7 Acetylation & Histone acetyltransferase 8 Dacetylation & Histone deacetylase 9 IV、HDAC inhibitors 9 Trichostatin A 10 Sodium Butyrate 10 V、HDAC inhibitors down regulate gene expression 10 VI、HDAC inhibitors inhibit SF-1 expression 10 In a dose- and time-dependent manner 11 Reduces SF-1-BS, E-box and CCAAT box binding 11 Reduces binding of USF1 and USF2 to E-box 12 Aim 13 Material and Methods 14 Cell culture and transfection 14 Plasmids construction 14 Western Blot analysis 15 Electrophoretic Mobility Shift Assay (EMSA) 15 Real-Time PCR 16 Administration of Trichostatin A and Sodium Butyrate 16 Results 18 I. HDAC inhibitors reduce SF-1 expression through SF-1 promoter region 18 II. TSA reduces SCC and USF2 mRNA but increases USF1 mRNA level 18 III. HDAC inhibitor decreases USF1 protein stability 19 IV. HDAC inhibitor effects in steroidogenesis in mice 19 Discussions 20 I. USF1 and USF2 have different response to TSA 20 The regulation of mRNA expression 20 The regulation of protein content 21 II. HDAC inhibitor effects in vivo 23 References 25 Table and Figures 33 | |
| dc.language.iso | en | |
| dc.subject | 因子 | zh_TW |
| dc.subject | 上游刺激因子一及二 | zh_TW |
| dc.subject | 膽固醇側鏈分切酵素 | zh_TW |
| dc.subject | 乙醯化 | zh_TW |
| dc.subject | 組蛋白去乙醯基轉移酵素抑制劑 | zh_TW |
| dc.subject | 腎上腺皮質腫瘤細胞 | zh_TW |
| dc.subject | 孤核受體 | zh_TW |
| dc.subject | 固醇轉錄 | zh_TW |
| dc.subject | the cholesterol side-chain cleavage enzyme | en |
| dc.subject | trichostatin A | en |
| dc.subject | histone acetylatransferase | en |
| dc.subject | P450 side chain cleavage enzyme | en |
| dc.subject | steroidogenic factor 1 | en |
| dc.title | 組蛋白去乙醯基轉移酵素阻礙劑抑制腎上腺皮質細胞內類固醇轉錄因子的表現 | zh_TW |
| dc.title | Inhibitors of Histone Deacetylase Down-regulate the Expression of Steroidogenic Factor 1 in Adrenocorticol Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾邦柱,詹東榮,阮麗蓉,楊文明 | |
| dc.subject.keyword | 類,固醇轉錄,因子,孤核受體,腎上腺皮質腫瘤細胞,組蛋白去乙醯基轉移酵素抑制劑,乙醯化,膽固醇側鏈分切酵素,上游刺激因子一及二, | zh_TW |
| dc.subject.keyword | histone acetylatransferase,P450 side chain cleavage enzyme,the cholesterol side-chain cleavage enzyme,steroidogenic factor 1,trichostatin A, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
