Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35529
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor萬本儒
dc.contributor.authorHsin-Yan Luen
dc.contributor.author呂信諺zh_TW
dc.date.accessioned2021-06-13T06:57:00Z-
dc.date.available2015-07-29
dc.date.copyright2011-07-29
dc.date.issued2011
dc.date.submitted2011-07-22
dc.identifier.citation1. J. L. Hedrick, R. D. Miller, C. J. Hawker, K. R. Carter, W. Volksen, D. Y. Yoon, and M. Trollsås, Advanced Materials, 10 (1998) 1049-1053.
2. M. Morgen, J.-H. Zhao, C. Hu, T. Cho, P. S. Ho and E. Todd, JOM Journal of the Minerals, Metals and Materials Society, 51 (1999) 37-40.
3. S. J. Martin, J. P. Godschalx, M. E. Mills, E. O. Shaffer II, and P. H. Townsend, Advanced Materials, 12 (2002) 1769-1778.
4. K. Maex, M. R. Baklanov, D. Shamiryan1, F. lacopi1, S. H. Brongersma, and Z. S. Yanovitskaya, Journal of Applied Physics, 93 (2003) 8793-8841.
5. H. Deligianni, Meeting Abstracts, MA 2005-02 (2005) 1303 (208th Meeting of The Electrochemical Society - Meeting Abstracts).
6. W.W. Lee and P.S. Ho, MRS Bulletin, 22 (1997) 19-23.
7. The International Technology Roadmap for Semiconductors, http://www.itrs.net/Links/2008ITRS/Home2008.htm (2008).
8. G. Maier, Progress in Polymer Science, 26 (2001) 3-65.
9. S.-M. Yuna, H.-Y. Changa, M.-S. Kangb, and C.-K. Choib, Thin Solid Films, 341 (1999) 109-111.
10. P. J. Bruinsma, N. J. Hess, J. R. Bontha, and J. Liu, Materials Research Society Symposium-Proceedings, 443 (1997) 105-110.
11. Q. Huo, D. I. Margolese and G. D. Stucky, Nature, 368 (1994) 317-321.
12. P. A. Kohl, A. Padovani, M. Wedladk, B. Dhananjay, A. S. A. Bidstrup, S. Robert, R. Larry, Materials Research Society Symposium-Proceedings, 565 (1999) 55-61.
13. C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (1990) 518.
14. M. T. Anderson, P. S. Sawyer, Microporous and Mesoporous Materials, 20 (1998) 53-65.
15. T. Ramos, K. Roderick, A. Maskara, Materials Research Society Symposium-Proceedings, 443 (1997) 91-98.
16. S.S. Prakash, C.J. Brinker, A.J. Hurd, Journal of Non-Crystalline Solids,190 (1995) 264-275.
17. M.-H. Jo, H.-H. Park, D.-J. Kim, S.-H. Hyun, S.-Y. Choi, and J.-T. Paik, Journal of Applied Physics,82 (1997) 1299-1304.
18. T. Mizuno, H. Nagata, and S. Manabe, Journal of Non-Crystalline Solids, 100(1988) 236-240.
19. B. P. Gorman, R. A. Orozco-Teran, J. A. Roepsch, H. Dong, R. F. Reidy and D. W. Mueller, Applied Physics Letters, 79 (2001) 4010-4012.
20. R. F. Reidy, B. P. Gorman, R. A. Orozco-Teran, J. A. Roepsch, H. Dong, D.W. Mueller, In: A.J. McKerrow, Y. Shacham-Ddiamand, S. Zaima and T. Ohba, Advanced Metallization Conference, Materials Research Society, (2001) 319-323.
21. H. Donga, B.P. Gormana, Z. Zhanga, R.A. Orozco-Terana, J. A. Roepschd, D. W. Muellerb, M. J. Kimc and R. F. Reidya, Journal of Non-Crystalline Solids, 350 (2004) 345-350.
22. C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Advanced. Materials, 11 (1999) 579-585.
23. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olsen, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, Journal of the American Chemical Society, 114 (1992) 10834-10843.
24. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359 (1992) 710-712.
25. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D. Stucky, Chemistry of Materials, 6 (1994) 1176-1191.
26. J. Y. Ying, C. P. Mehnert, and M. S. Wong, Angewandte Chemie International Edition, 38 (1999) 56-77.
27. M. E. Davis, Nature, 417 (2002) 813-821.
28. H. Yang, A. Kuperman, N. Coombs, S. Mamiche-Afara, and G. A. Ozin, Nature 379 (1996) 703-705.
29. H. Yang, N. Coombs, I. Sokolov, and G. A. Ozin, Nature 381 (1996) 589-592.
30. I. A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter,P. M. Eisenberger, and S. M. Gruner, Science 273 (1996) 892-898.
31. H. Yang, N. Coombs, I. Sokolov, and G. A. Ozin, Journal of Materials Chemistry, 7 (1997) 1285-1290.
32. H. Yang, N. Coombs, I. Sokolov, and G. A. Ozin, Journal of Materials Chemistry, 8 (1998) 743-750.
33. H. Yang, S.-M. Yang, N. Coombs, I. Sokolov, C. T. Kresge, and G. A. Ozin, Advanced Materials, 11 (1999) 52-55.
34. H. Yang, I. Sokolov, N. Coombs, C. T. Kresge, and G. A. Ozin, Advanced Materials, 11 (1999) 1427-1431.
35. M. Ogawa, Chemical Communications, 1 (1996) 1149-1150.
36. H.-T. Hsu, C.-Y. Ting, C.-Y. Mou, and B.-Z. Wan, Studies in Surface Science and Catalysis, 146 (2003) 539-542.
37. B. J. Scott, G. Wirnsberger, and G. D. Stucky, Chemistry of Materials, 13 (2001) 3140-3150.
38. G. Wirnsberger, P. Yang, B. J. Scott, B. F. Chmelka, and G. D. Stucky, Spectrochimica Acta Part A, 57 (2001) 2049-2060.
39. M. Wark, Y. Rohlfing, Y. Altindag, and H. Wellmann, Physical Chemistry Chemical Physics, 5 (2003) 5188-5194.
40. R.Vogel, P. Meredith, I. Kartini, M. Harvey, J. D. Riches, A. Bishop, N. Heckenberg, M. Trau, and H. Rubinsztein-Dunlop,ChemPhysChem, 4 (2003) 595-603.
41. T. Yamada, H. S. Zhou, H. Uchida, M. Tomita, Y. Ueno, I. Honma, K. Asai, and T. Katsube, Microporous Mesoporous Materials, 54 (2002b) 269-276.
42. T. Yamada, H.-S. Zhou, H. Uchida, M. Tomita, Y. Ueno, T. Ichino, I. Honma, K. Asai, and T. Katsube, Advanced Materials, 14 (2002a)812-815.
43. B. Yuliarto, H. Zhou, T. Yamada, I. Honma, and K. Asai, Chemistry Letters, 32 (2003) 510-511.
44. A. Bearzotti, J. M. Bertolo, P. Innocenzi, P. Falcaro, and E. Traversa, Sensors and Actuators B, 95 (2003) 107-110.
45. S. Dai, Y. Shin, Y. Ju, M. C. Burleigh, J.-S. Lin, C. E. Barnes, and Z. Xue, Journal of the American Chemical Society, 122 (2000) 992-993.
46. M. C. Burleigh, S. Dai, E. W. Hagaman, and J. S. Lin, Chemistry of Materials, 13 (2001) 2537-2546.
47. W. Yantasee, Y. Lin, X. Li, G. E. Fryxell, T. S. Zemanian, and V. V. Viswanathan, Analyst, 128 (2003) 899-904.
48. X. B. Xu, Tian, J. Kong, S. Zhang, B. Liu, and D. Zhao, Advanced Materials, 15 (2003) 1932-1936.
49. A .Corma, Chemical Reviews, 97 (1997) 2373-2419.
50. J. Y. Ying, C. P. Mehnert, and M. S. Wong, Angewandte Chemie International Edition, 38 (1999) 56-77.
51. K. Ikeue, S. Nozaki, M. Ogawa, and M. Anpo, Catalysis Today, 74 (2002) 241-248.
52. Y. Shioya, K. Ikeue, M. Ogawa, and M. Anpo, Applied Catalysis A: General, 254 (2003) 251-259.
53. A. Kucernak and J. Jiang, Chemical Engineering Journal, 93 (2003) 81-90.
54. A. Cabot, J. Arbiol, A. Cornet, J. R. Morante, F. Chen, and M. Liu, Thin Solid Films, 436 (2003) 64-69.
55. S. Baskaran, J. Liu, K. Domansky, N. Kohler, and X. Li, Advanced Materials, 12 (2000) 291-294.
56. C.-M. Yang, A. T.-Cho, F.-M Pan, T.-G. Tsai, and K.-J. Cho, Adanced Materials, 13 (2001) 1099-1102.
57. C.-Y. Ting, C.-A. Wu, B.-Z. Wan, and W.-F. Wu,Journal of the Chinese Institute of Chemical Engineers, 34 (2003) 211-217.
58. C.-Y. Ting, D.-F. Ouyan, and B.-Z. Wan,Journal of the Electrochemical Society, 150 (2003) F164-F167.
59. C.-Y. Ting, D.-F. Ouyan, W.-F. Wu, and B.-Z. WanStudies in Surface Science and Catalysis, 146 (2003) 391-394.
60. S.-B. Jung and H.-H. Park, Applied Surface Science, 244 (2005) 47–50.
61. P. J. Bruinsma, J. R. Bontha, J. Liu, and S. Baskaran, U.S. Pat. 5,922,299 (1999).
62. D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelke, G. D. Stucky, Advanced Materials, 10 (1998) 1380-1385.
63. G. Wirnsberger, P. Yang, B. J. Scott, B. F. Chmelka, G. D. Stucky, Spectrochimica Acta Part A, 57 (2001) 2049–2060.
64. C.-Y Ting, D.-F. Ouyan, and B.-Z. Wan, in Program and Abstracts of 3rd International Mesostructured Materials Symposium, (2002) 146-147.
65. C.-Y. Ting, H.-S. Sheu, W.-F. Wu, and B.-Z. Wan, J. Electrochem. Soc. 154-1 (2007) G1-G5.
66. C.-Y. Ting, H.-S. Sheu, W.-F. Wu, B.-Z. Wan, Studies in Surface Science and Catalysis, 156 (2005) 295-302.
67. F. K. de Theije, A. R. Balkenende, M. A. Verheijen, M. R. Baklanov, K. P. Mogilnikov, and Y. Furukawa, Journal of Physical Chemistry B, 107 (2003) 4280-4289.
68. C. N. Satterfield, Heterogeneous catalysis in industrial practice, 2nd edition, (1991) 133.
69. S.-B. Jung and H.-H. Park, Thin Solid Films, 494 (2006) 320-324.
70. J. Lee, H. Busta, R. Myers, T. Dear, M.R. Dokmeci, and J. Bernstein, Proceedings of SPIE, 4979 (2003) 129-136.
71. C.-T. Tsai, H.-Y. Lu, C.-Y. Ting, W.-F. Wu, B.-Z. Wan, Thin Solid Films, 517 (2009) 2039–2043.
72. A.-T. Cho, F.-M. Pan, K.-J. Chao, P.-H. Liu, and J.-Y. Chen, Thin Solid Films, 483 (2005) 283– 286.
73. T.-J. Ha, S. G. Choi, S.-B. Jung, B.-G. Yu, and H.-H. Park, Ceramics International, 34 (2008) 947–951.
74. Z. Wang, H. Wang, A. Hitra, and Y. Yan, Advanced Materials, 13 (2001) 746-749.
75. Z. Wang, A. Hitra, H. Wang, and Y. Yan, Advanced Materials, 13 (2001) 1463-1466.
76. S. Li, Z. Li, and Y. Yan, Advanced Materials, 15 (2003) 1528-1531.
77. Z. Li, S. Li, H. Luo, and Y. Yan, Advanced Functional Materials, 14 (2004) 1019-1024.
78. A. Mitra, T.Cao, H. Wang, Z. Wang, L. Huang, S. Li, Z. Li, and Y. Yan, Industrial and Engineering Chemistry Research, 43 (2004) 2945-2949.
79. Z. Li, C. M. Lew, S. Li, D. I. Medina, and Y. Yan, Journal of Physical Chemistry B, 109 (2005) 8652-8658.
80. S. Eslava, C. E. A. Kirschhock, S. Aldea, M. R. Baklanov, F. Iacopi, K. Maex, and J. A. Martens, Microporous Mesoporous Materials, 118 (2009) 458-466.
81. S. Eslava, M. R. Baklanov, A. V. Neimark, F. Iacopi, C. E. A. Kirschhock, K. Maex, and J. A. Martens, Advanced Materials 20 (2008) 3110-3116.
82. R. Moonhor, Y. Jinhwan, and H. Kyuyoung, Journal of Materials Chemistry, 16 (2006) 685–697.
83. M. Johnson, Z. Li, J. Wang, and Y. Yan, Thin Solid film, 515 (2007) 3164-3170.
84. N. Hata, G. Guan, T. Yoshino, and S. Takada, U.S. patent 7384622B2 (2008).
85. T. Yoshino, N. Ohnuki, N. Hata, and Y. Seino, Japanese Journal of Applied Physics, 48 (2009) 0502101-052103.
86. T. Seo, T. Yoshino, N. Ohnuki, Y. Seino, Y. Cho, N. Hate, and T. Kikkaw, Journal of the Electrochemical Society, 156 (2009) H98-H105.
87. T. Seo, T. Yoshino, Y. Cho, N. Hate, and T. Kikkaw, Japanese Journal of Applied Physics, 46 (2007) 5742–5746.
88. E.P. Barrett, L.G. Joyner, and P.P. Halenda, Journal of the American Chemical Society, 73 (1951) 373-380.
89. Y.-C. Hsu, Y.-T. Hsu, H.-Y. Hsu, and C.-M. Yang, Chemistry of Materials, 19 (2007) 1120-1126.
90. Y.-T. Hsu, W.-L. Chen, and C.-M. Yang, Journal of Physical Chemistry C, 113 (2009) 2777-2783.
91. M. H. Laurence and J. M. Christophe,. Experimental organic chemistry: Principles and Practice (Illustrated edition ed.), (1989) 292.
92. G. Coudurier, C. Naccache, and J. C. Vedrine, Journal of the Chemical Society, Chemical communications, (1982) 1413-1415.
93. D. B. Shukla and V. P. Pandya, Journal of Chemical Technology & Biotechnology, 44 (1989) 147-154.
94. X. Li, and B. Bhushan, Materials Characterization, 48 (2002) 11-36.
95. N. Petkov, S. Mintova, B. Jean, T. H. Metzger, S. Mintova, and T. Bein, Chemistry of Materials, 15 (2003) 2240-2246.
96. N. Petkov, M. Holzl, T. H. Metzger, S. Mintova, and T. Bein, Journal of Physical Chemistry B, 109 (2005) 4485-4491.
97. D. J. Taylor and D. P. Birnie,Chemistry of Materials, 14 (2002) 1488-1492.
98. D. P. Bimie, R. N. Vogt, M. N. Orr, and J. R. Schifko, Microelectronic Engineering, 29 (1995) 189-192.
99. D. E. Haas, J. N. Quijada, S. J. Picone, and D. P. Birnie, Proceedings of SPIE, 3943 (2000) 280-284.
100. D. E. Haas and D. P. Birnie, Journal of Materials Science Letters, 20 (2001) 1763 – 1766.
101. D. P. Birnie, Journal of Materials Research, 16 (2001) 1145-1154.
102. D. E. Haas and D. P. Birnie, Journal of Materials Research, 16 (2001) 3355-3360.
103. D. E. Haas and D. P. Birnie, Journal of Materials Science, 37 (2002) 2109–2116.
104. D. P. Birnie, D. M. Kaz, and D. J. Taylor, Journal of Sol-Gel Science and Technology, 49 (2009) 233–237.
105. Lange's Handbook of Chemistry (1967) 1661.
106. J. M. Thomas and W. J. Thomas, Principles and Practice of Heterogeneous Catalysis (1997) 275-279.
107. R. Ravishankar, C. E. A Kirschhock, P.-P. Knops-Gerrit, E. J. P. Feijen, P. J. Grobet, P. Vanoppen, F. C. De Schryver, G. Miehe, H. Fuess, B. J. Schoeman, P. A. Jacobs, and J. A. Martens, Journal of Physical Chemistry B, 103 (1999) 4960-4964.
108. W. H. Dokter, H. F. van Garderen, T. P. M. Beelen, R. A. van Santen, and W. Bras, Angewandte Chemie International Edition in English, 34 (1995) 73-75.
109. Q. Li, B. Mihailova, D. Creaser, and J. Sterte, Microporous Mesoporous Materials, 40 (2000) 53-62.
110. T. F. Retajczyk and A. K. Sinha, Thin Solid Films, 70 (1980) 241-247.
111. D. S. Bhange and V. Ramaswamy,Materials Research Bulletin, 41 (2006) 1392-1402.
112. Y. Kuwahara, T. Kamegawa, K. Mori, Y. Matsumura, and H. Yamashita, Topics in Catalysis, 52 (2009) 643-648.
113. D. G. Peters, J. M. Hayes, and G. M. Hieftje, Chemical Separations and Measurement, Therry and Practice of Analytical Chemistry (1974) 731-732.
114. L. Y. Yang, D. H. Zhang, F. X. Deng and C. Y. Li, IPFA 2010 - 17th International Symposium on the Physical and Failure Analysis of Integrated Circuits (2010) 5532229.
115. J.-P. Barnes, D. Lafond, C. Guedj, M. Fayolle, P. Meininger, S. Maitrejean, T. David, N. Possémé, P. Bayle-Guillemaud. and A. Chabli, Journal of Physics: Conference Series, 26 (2006) 77–80.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35529-
dc.description.abstract本研究利用水熱程序在鹼性環境下製備出含純矽MFI沸石或是非結晶型奈米顆粒之鍍膜溶液,以製備中孔洞型低介電常數薄膜(mesoporous low-k films),研究之目的為製備具有介電常數小於2且高機械強度(硬度大於1 GPa且彈性係數大於10GPa)之低介電常數薄膜。本研究利用XRD及FTIR分析鍍膜溶液中顆粒之結晶性,用以探討顆粒結晶性對薄膜性質之影響,並利用動態雷射光粒徑分析儀分析鍍膜溶液中之顆粒的大小。本研究也使用固態NMR分析顆粒所含Si-O-Si及Si-OH基團的量;使用氮氣吸脫附之孔洞分析儀測量樣品的孔洞分佈範圍以及孔洞體積。研究中並使用SEM及光學顯微鏡觀察含不同結晶性顆粒之鍍膜溶液所形成薄膜的表面型態。薄膜的介電常數及漏電流則利用電性分析儀器量測,而機械強度則使用奈米壓痕機(nanoidenter)進行分析。
由本研究結果得知,各鍍膜液中是否含有界面活性劑,對所鍍之薄膜性質有關鍵性的影響。若僅使用不含界面活性劑的純矽MFI沸石或是非結晶型顆粒溶液進行旋轉塗佈程序製膜,所鍍出之薄膜不是破裂就是表面粗糙。以文獻中兩階段水熱程序(60℃48小時,100℃36到48小時)所製備之純矽MFI沸石溶液為例,添加Tween 80界面活性劑後,可以成功鍍膜並能獲得均勻之薄膜,且於最適化的條件下,薄膜介電常數為1.83、硬度1.39 GPa、彈性係數12.3 GPa以及漏電流密度為1.35 × 10-7 A/cm2,這些性質已經符合未來積體電路工業的需求。
為了節省兩階段水熱程序冗長的製程(約需要156到168個小時),本研究已研發出一系列單階段的水熱製程(僅需27到51個小時)。該製程在100℃水熱溫度及24小時反應時間可製備出含平均粒徑為4.6奈米的非結晶型顆粒之鍍膜液。當水熱反應時間增長為36小時以上時,XRD已可明顯偵測出MFI沸石結晶型顆粒,其粒徑及孔洞體積都隨反應時間增加而增加。固態NMR分析則顯示顆粒上Si-OH基團(silanol groups)濃度隨反應時間增加而減少,換句話說,非結晶型顆粒具最高之SiOH基團(silanol groups)濃度。由研究結果也發現,薄膜之機械強度隨溶液水熱反應時間增長而減少,而利用非結晶型顆粒鍍膜液能鍍出機械強度最高之薄膜。但由於此非結晶性顆粒表面具有很多的SiOH基團(silanol groups),使用該顆粒所製備的薄膜太厚時會增加疏水性修飾的難度,因此須將薄膜厚度降低。如此可製備出同時也具有小於2的低介電常數、低漏電流密度(為數量級10-7A/cm2)及高機械強度(硬度1.73 GPa、彈性係數17.0 GPa)之中孔洞型低介電常數薄膜。
  本研究發現若要製備出機械性質佳的中孔洞型低介電常數薄膜,膜中所含之奈米顆粒之光密度比值(ratio of optical density,FTIR測得,550cm-1波峰強度與450cm-1波峰強度的比值)必須小於10 %。單階段24小時水熱所成之非結晶型顆粒,其光密度比值為0 %,因此機械強度高。而水熱時間大於42小時所成之純矽沸石顆粒,其光密度比值會大於10 % (界於15 %到42 %之間),因此必須藉由離心程序移除溶液中的大結晶顆粒,才使溶液中的顆粒光密度比值小於10 %,因而成功製備出介電常數小於2、低漏電流密度(為數量級10-8A/cm2)以及高機械強度的中孔洞型低介電常數薄膜。
zh_TW
dc.description.abstractIn this research, mesoporous low dielectric constant (low-k) films were prepared from coating solutions composed of surfactant Tween 80 and nanoparticles of different crystallinity synthesized through hydrothermal processes. The propose is to prepare mesoporous low-k films with dielectric constants of < 2 and high mechanical strength, hardness of > 1 GPa and elastic modulus of > 10 GPa. According to the results obtained in this research, for the films prepared from coating solutions containing PSZ nanocrystal only (no Tween 80 involved), the films showed serious cracking or were very rough. As Tween 80 was added into the solutions containing the PSZ nanocrystals prepared through a two-stage hydrothermal process, films with uniform surface morphology can be obtained. A film spin-coated from coating solution prepared under optimal experimental conditions possessed an ultra low k value of 1.83, a hardness of 1.39 GPa, an elastic module of 12.3 GPa, and a leakage current density of 1.35 × 10-7 A/cm2, all of which met the needs of the integrated circuits (IC) industry.
However, the two-stage hydrothermal process took 156 to 168 h to synthesize the PSZ nanocrystals that was too long and took too much energy. In order to address the concern, a faster one-stage hydrothermal processes which took only 27 to 51 h to prepare the coating solutions were developed in this research. Coating solutions containing noncrystalline silica particles with an average size of 4.6 nm were synthesized through the one-stage hydrothermal process that took only 24 h to synthesize the noncrystalline silica particles. As the hydrothermal time was increased to 36 h or higher, MFI-type structure of zeolite nanocrystals could be easily observed. The amount of silanol groups on the particle surface, measured through solid-state NMR spectra, was decreased with the increase of hydrothermal time, indicating that the amount of the silanol groups in the noncrystalline silica particles was the most of all samples. The mechanical strength of the films was also decreased with the increase of hydrothermal time, and the film prepared with the noncrystalline silica particles possessed the strongest mechanical strength. Due to that there were many silanol groups on the surface of the noncrystalline silica particles, the modification of the silanol groups to become hydrophobic might not be complete enough when the film was too thick. Therefore, the film thickness was reduced, and then a mesoporous low-k film possessed k values of smaller than 2, low leakage current densities (of order of 10-8 A/cm2) and high mechanical strength (hardness of 1.73 GPa and elastic modulus of 17.0 GPa) was obtained.
It was found that for preparing mesoporous low-k films with high mechanical strength and low k values, the ratio of optical density of < 10 % (ratio of optical density, measured from FTIR spectra, which was the ratio of intensity for band 550cm-1 to band 450cm-1) of the nanoparticles is necessary to prepare the mesoporous low-k films.When the hydrothermal time was higher than 42 h in the one-stage hydrothermal process, the ratio of optical density of the so-obtained nanoparticles was higher than 10 % (between 15 % and 42 %); therefore, a centrifugation step should be applied to remove big nanoparticles, resulting in that the ratio of optical density of the nanocrystal in the resulting centrifuged coating solution could be smaller than 10 %. As a result, mesoporous low-k films which possessed k values of < 2, low leakage current densities of order of 10-8 A/cm2, and high mechanical strength (hardness of > 1 GPa and elastic modulus of > 10 GPa) were successfully prepared from the centrifuged coating solutions.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:57:00Z (GMT). No. of bitstreams: 1
ntu-100-D94524012-1.pdf: 6514985 bytes, checksum: b018feba1167956fa442905c2fc38c48 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
摘要 I
Abstract III
Table of Contents VI
Table of Tables X
Table of Figures XI

Chapter 1 Introduction 1
1-1 Background 1
1-2 Classification of low-k materials 2
1-2.1 Organic polymer based dielectrics 3
1-2.2 Silsesquioxane based dielectrics 3
1-2.3 Silica based dielectrics 5
1-3 Porous silica low-k dielectrics 8



1-3.1 Aerogel/ xerogel methods 8
1-3.2 Surfactant-templated method 11


1-3.2.1 Mechanism of preparing porous/ mesostructure
materials through surfactant-templated method 12
1-3.2.2 Applications of mesostructure materials 17
1-3.2.3 Mesoporous silica low-k dielectrics 19
1-3.2.4 Improvement of mechanical strength of mesoporous
silica low-k films 23
1-3.3 Hydrothermal method 26
1-4 Objectives 30

Chapter 2 Experimental section 34
2-1 Chemicals 34
2-2 Apparatuses 34
2-3 General processes for the preparation of substrate cleaning
and low-k films 35
2-3.1 Cleaning substrates 35
2-3.2 Preparation of coating solutions and low-k films 36
2-4 Characterizations 40
2-4.1 X-ray diffraction 40
2-4.2 Nitrogen adsorption/desorption measurements 40
2-4.3 Solid-State NMR characterization 41
2-4.4 FTIR characterization 41
2-4.5 Particle size measurement 42
2-4.6 Inductively Coupled Plasma Optical Emission Spectrometry
(ICP) characterization 42
2-4.7 Surface morphology characterization 42
2-4.8 Characterization of low-k films 43
2-4.8.1 Characterization of low-k films 43
2-4.8.2 Dielectric constant measurement 44
2-4.8.3 Leakage current density measurement 45
2-4.8.4 Film thickness measurement 45
2-4.8.5 Mechanical strength measurement 45

Chapter 3 Preparation of mesoporous low-k films from PSZ MFI nanocrystals synthesized through
two-stage hydrothermal process 47
3-1 Introduction 47
3-2 Experimental section 48
3-3 Effects of Tween 80 addition on the surface morphology of
the mesoporous PSZ MFI low-k films 48
3-4 Effects of Tween 80 addition on the pore sizes of the
mesoporous PSZ MFI materials 64
3-5 k value and mechanical strength of mesoporous PSZ MFI
low-k films 69
3-6 Summary 73

Chapter 4 Preparation of mesoporous low-k films from noncrystalline silica nanoparticles prepared through one-stage hydrothermal process 76
4-1 Introduction 76
4-2 Experimental section 77
4-3 Particle size and particle crystallinity characterization 78
4-4 Nitrogen adsorption/desorption analysis of the particles with
different crystallinity and different sizes 82
4-5 Effects of particle crystallinity, total pore volume, and
surface 85
4-6 Effect of film thickness on k value of mesoporous films
prepared with the noncrystalline silica particles 91
4-7 Summary 97

Chapter 5 Preparation of mesoporous low-k films from PSZ MFI nanocrystals synthesized through one-stage hydrothermal process 100
5-1 Introduction 100
5-2 Experimental section 101
5-3 Characterizations of particle crystallinity of PSZ MFI
nanocrystals 102
5-4 Pore size distribution analysis 106
5-5 k values and mechanical strength of mesoporous low-k films
made from PSZ nanocrystals 113
5-6 Discussion of the mechanical and electrical properties of
mesoporous low-k films prepared form uncentrifuged coating
solutions 114
5-7 Discussion of the effect of centrifugation on the mechanical
and electrical properties of mesoporous low-k films 123
5-8 Summary 128

Chapter 6 Conclusions 131
References 138
Table of Tables
Table 1-1 Commercialized dielectrics. Adapted ( Maex et al. [4]) 7
Table 1-2 Effect of reflux time of the preparation of coating solution on various properties of the films 25
Table 1-3 Effect of TPAOH addition to the coating solution on various properties of the films 25
Table 3-1 Film thickness, electronic and mechanical properties of the mesoporous PSZ MFI low-k films 54
Table 3-2 Average particle sizes in the coating solutions and total pore volumes of the powder samples prepared form the coating solutions 58
Table 4-1 Electronic and Mechanical Properties of Mesoporous low-k Films Prepared from Coating Solutions Containing Non-crystalline Silica Particles and Surfactant Tween 80 95
Table 5-1 Various properties of mesoporous low-k films and powders prepared from coating solutions with different hydrothermal times 106



Table of Figures
Figure 1-1 Structure of Silsesquioxane (SSQ) with formula (R-SiO2/3)n, where R is hydrogen, alkyl, alkenyl, alkoxy, or aryl. Adapted (Maex et al. [4]) 4
Figure 1-2 a) Elementary unit of SiO2, b) Elementary unit of SiO2 with CH3 substitution, c) long chain structure, and d) cross linking structure. Adapted (Maex et al. [4]) 6
Figure 1-3 Preparation of aerogel and xerogel materials with supercritical extraction and air drying processes 11
Figure 1-4 Representation of the various types of inorganic-surfactant head group interactions: electrostatic: a) S+I-, b) S-I+, c) S+X-I+, and d) S-M+I-; hydrogen bonding: e) S0I0 and f) N0I0; and covalent bonding: g) S-I. Adapted (Ying et al. [26]) 15
Figure 1-5 Cooperative templating of the generalized liquid crystal mechanism. Adapted (Huo et al. [25]). (A) Cooperative nucleation; (B), (C) liquid crystal formation with molecular inorganic compounds; (D) inorganic polymerization and condensation 16
Figure 1-6 a) preparation of mesoporous silica low-k films through surfactant-templated method; b) preparation of mesoporous silica low-k films through reflux process and surfactant-templated method 33
Figure 2-1 Illustration of the experimental procedure with a two-stage hydrothermal process 38
Figure 2-2 Illustration of the experimental procedure with a one-stage hydrothermal process 39
Figure 2-3 Illustration of metal-insulator-semiconductor (MIS) structure 43
Figure 2-4 A typical capacitance-voltage (C-V) curve 44
Figure 2-5 A typical characterization curve of elastic modulus of a low-k film 46
Figure 3-1 Surface morphologies of the mesoporous PSZ MFI low-k films spin-coated from various solutions: a) and b) solution HT36, c) a solution after solution HT36 was centrifuged, d) to f) three centrifuged solutions composed of solution HT36 and Tween 80 with Tween 80/TEOS weight ratios of 0.05, 0.21, and 0.41, respectively 51
Figure 3-2 SEM images: a) a top view of two of the stripes shown in Fig. 1a; b) and c) cross section views of the stripes in image a) 52
Figure 3-3 Surface morphologies of the mesoporous PSZ MFI low-k films spin-coated from various solutions: (a) solution HT48 without the addition of Tween 80, (b) and (c) two centrifuged solutions composed of solution HT48 and Tween 80 with Tween 80/TEOS weight ratios of 0.05, 0.21, respectively 56
Figure 3-4 Schematic illustrations showing: a) a less hydrophilic surface of a nanocrystal; b) a weak affinity occurred between the nanocrystal and the surface of the substrate due to a poor interaction of the less hydrophilic nanocrystal surface and the highly hydrophilic substrate. c) a more hydrophilic surface of the nanocrystal because of adsorbing the hydrophobic tails of Tween 80; d) a strong affinity occurred between the nanocrystals and the substrate due to a strong interaction of the hydrophilic heads of Tween 80 and the -OH groups of the substrate 59
Figure 3-5 Schemetic illustration of stripe formation. Adopted [Birnie, 2001 [101]] 60
Figure 3-6 Relationship of solvent vapor pressure and surface tension of various solvents. Adopted [Birnie, 2001 [101]] 62
Figure 3-7 Addition of solvent B in to a mixture of C and D to change the negative solpe of CD line into a postive CB line, thus preventing the formation of stripes. Adopted [Birnie, 2001 [101]] 63
Figure 3-8 a) Nitrogen adsorption/desorption isotherms and b) pore size distribution curves from the powder samples dried from solution HT36 without Tween 80 addition, and the centrifuged solutions composed of solution HT36 and Tween 80 with different weight ratios of Tween 80/TEOS

66
Figure 3-9 a) Nitrogen adsorption/desorption isotherms and b) pore size distribution curves from the powder samples dried from solution HT48 without Tween 80 addition, and the centrifuged solutions composed of solution HT48 and Tween 80 with different weight ratios of Tween 80/TEOS 68
Figure 4-1 X-ray differaction patterns of powder samples from coating solutions containing particles with different crystallinities 81
Figure 4-2 FTIR spectra from powder samples from coating solutions containing particles with different crystallinities 81
Figure 4-3 Particle size distributions in different coating solutions. 82
Figure 4-4 a) Nitrogen adsorption/desorption isotherms and b) pore size distribution curves from the powder samples prepared from coating solutions containing particles with different crystallinity. The arrows pointing toward the upper right side are adsorption isotherms, and those pointing toward to the lower left side are desorption isotherms 85
Figure 4-5 Hardness and elastic modulus of the mesoporous low-k films, exhibited with open square and red solid sphere symbols, respectively, and error bars (representing standard deviation of hardness or elastic modulus), and the total pore volume of powder samples, exhibited with open triangle symbols, prepared from coating solutions containing particles with different crystallinities 90
Figure 4-6 Surface topography images, (a) a lower resolution image with a scale bar of 1 micron meter, and (b) a higher resolution image with a scale bar of 200 nm, of the mesoporous low-k films prepared from coating solutions containing particles with different crystallinities 91
Figure 4-7 a) A cross section image of sample NCS and b) a schematic illustration of surface modification occurred inside a thick film prepared with the non-crystalline silica particles 96
Figure 4-8 a) Nitrogen adsorption/desorption isotherms and b) pore size distribution curves from the powder samples prepared from coating solutions containing the non-crystalline silica particles with different dilution ratio 97
Figure 5-1 X-ray diffraction characterization of powders prepared from uncentrifuged coating solutions, samples 36BC, 42BC, and 48BC, and that from centrifuged conting solutions, samples 36AC, 42AC, and 48BC 105
Figure 5-2 FTIR characterization of powders prepared from uncentrifuged coating solutions, samples 36BC, 42BC, and 48BC, and that from centrifuged conting solutions, samples 36AC, 42AC, and 48BC 105
Figure 5-3 Nitrogen adsorption/desorption isotherms of coating solutions prepared from different hydrothermal times (subfigures a-36, a-42, and a-48), pore size distribution curves of coating solutions prepared from different hydrothermal times (subfigures b-36, b-42, and b-48). #ORI, #BC, and #AC represent powders prepared from solutions without the addition of Tween 80, uncentrifuged coating solutions, and centrifuged coating solutions, respectively 110
Figure 5-4 Surface topographies of mesoporous low-k films prepared from uncentrifuged (samples 36BC, 42BC, and 48BC) and centrifuged (samples 36BC, 42BC, and 48BC) coating solutions 121
Figure 5-5 29Si MAS solid-state NMR spectra from dried samples of both uncentrifuged (samples 36BC, 42BC, and 48BC) and centrifuged coating solutions (samples 36AC, 42AC, and 48AC) 122
Figure 5-5-1 29Si MAS solid-state NMR spectra from dried samples of samples NCS, 36BC, 42BC, and 48BC 122
Figure 5-6 Illustration of a cross section of the cracked film of sample 48BC that symbols d and d' represent the film thicknesses measured at the places without and with cracks, respectively 123
dc.language.isoen
dc.title利用結晶型沸石及非晶型氧化矽奈米顆粒製備中孔洞型低介電常數薄膜zh_TW
dc.titlePreparation of Mesoporous Low-k Films from Crystalline Pure Silica Zeolite (PSZ) Nanocrystals and from Noncrystalline Silica Nanoparticlesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭淑芬,吳嘉文,潘扶民,陳立仁
dc.subject.keyword中孔洞型低介電常數薄膜,界面活性劑 Tween 80,MFI結構的純矽沸石顆粒,非結晶性二氧化矽顆粒,兩階段/單階段水熱程序,光密度比值(相當於顆粒結晶性),機械強度,zh_TW
dc.subject.keywordmesoporous low-k films,Tween 80,PSZ MFI nanoparticles,noncrystalline silica particles,two-stage/one-stage hydrothermal process,ratio of optical density (particle crystallinity),mechanical strength,en
dc.relation.page146
dc.rights.note有償授權
dc.date.accepted2011-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
6.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved