Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35520
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群(Yi-Chun Wu)
dc.contributor.authorJu-Ling Liuen
dc.contributor.author劉如玲zh_TW
dc.date.accessioned2021-06-13T06:56:35Z-
dc.date.available2007-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-27
dc.identifier.citationReferences
1. Samir K., Hean L. K., Jennifer J., Michael R. and Timothy R., (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
2. Roe J.L., Rivin C.J., Sessions R.A., Feldmann K.A., and Zambryski P.C. (1993).The Tousled gene in A. thaliana encodes a protein kinase homolog that is required for leaf and flower development. Cell 75, 939-950.
3. Sillje H.H., Takahashi K., Tanaka K., Van H.G., and Nigg, E.A. (1999). Mammalian homologues of the plant Tousled gene code for cell-cycle-regulated kinases with maximal activities linked to ongoing DNA replication. EMBO J. 18, 5691-5702.
4. Sillje H.H., and Nigg E.A. (2001). Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr Biol. 11, 1068-1073.
5. Carrera P., Moshkin Y.M., Gronke S., Sillje H.H., Nigg E.A., Jackle H., and Karch F. (2003). Tousled-like kinase functions with the chromatin assembly pathway regulating nuclear divisions. Genes Dev. 17, 2578-2590.
6. Li Y., DeFatta R., Anthony C., Sunavala G., and De Benedetti A. (2001). A translationally regulated Tousled kinase phosphorylates histone H3 and confers radioresistance when overexpressed. Oncogene. 20, 726-738.
7. Han Z., Saam J.R., Adams H.P., Mango S.E., and Schumacher J.M. (2003). The C. elegans Tousled-like kinase (TLK-1) has an essential role in transcription. Curr Biol. 13, 1921-1929.
8. Krause D.R., Jonnalagadda J.C., Gatei M.H., Sillje H.H., Zhou B.B., Nigg E.A., and Khanna K. (2003). Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1. Oncogene. 22, 5927-5937.
9. Groth A., Lukas J., Nigg E.A., Sillje H.H., Wernstedt C., Bartek J., and Hansen K. (2003). Human Tousled like kinases are targeted by an ATM- and Chk1-dependent DNA damage checkpoint. EMBO J. 22, 1676-1687.
10. Brian J.B., Kanmi A., Mark B.R. and Steven H. (1999). A histone-H3-like protein in C.elegans. Nature. 401, 547-548
11. London L.M. and Mark B.R. (2001). HCP-4, a CENP-C-like protein in C.elegans. J. C. B. 153, 1199-1207
12. Albertson D. G. and Thomson J. N. (1982). The kinetochores of C.elegans. Chromosoma 86, 409–428
13. Sullivan K. F., Hechenberger M. and Masri K. H. (1994). CENP-A contains a histone H3-related histone fold domain that is required for targeting to the centromere. J. C. B. 127,581–592
14. Meluh P. B. et al. (1998). Cse4p is a component of the core centromere of S. cerevisiae. Cell 94, 607–613
15. Tomkiel J., C.A., Cooke H., Saitoh R.L., and Bernat W.C. (1994). CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J. C. B. 125, 531–545.
16. Landon L.M., Mike M., and Mark B. R. (1999). HCP-1, a protein involved in chromosome segregation, is localized to the centromere of mitotic chromosome in C. elegans. J.C.B. 147, 471-479

17. Praitis V., Casey E., Collar D., and Austin J. (2001). Creation of low-copy integrated transgenic lines in C.elegans. Genetics. 157, 1217-1226
18. Strome S., Power J., Dunn M., Reese K., Malone C.J., White J., Seydoux G., and Saxton W. (2001). Spindle dynamics and the role of γ-tubulin in early C.elegans embryos. Mol. Biol. Cell 12, 1751-1764.
19. Lisa T., and Andrew F. (1998). Specific interference by ingested dsRNA. Nature. 395, 854-855.
20. Vidal M. (1997). The reverse two-hybrid system in the two-hybrid system. Oxford University Press, New York, 109.
21. Kiestan A.H., Victor F.H., Nicholas R.C. and Barbara J.M. (2202) C.elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes and Dev. 16, 729-742.
22. Hirano T., Kobayashi R., and Hirano M. (1997). Condensin, chromosome condensation protein complexes containing X-CAP-C, X-CAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell. 89, 511-521.
23. Strunnikov A.V., Hogan F., and Koshland D. (1995). SMC2, a S. cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes and Dev. 9, 587-599.
24. Steffensen S., Coelho P.A., Cobbe N., Vass S., Costa M., Hassan B., Prokoenko S.N., Bellen H., and Heck M.M. (2001) A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis. Curr, Biol. 11, 295-307.
25. Lovoie B.D., Tuffo K.M., Oh S., Koshland D., and Holm C. (2000). Mitotic chromosome condensation requires Brn1p, the yeast homologue of Barren. Mol. Boi. Cell 11, 1293-1304
26. Ouspenski Ⅱ., Cabello O.A., and Brinkley B.R. (2000). Chromosome condensation factor Brn1p is required for chromatid separation in moitosis. Mol. Boi. Cell 11, 1305-1313.
27. Verreault A., Kaufman P.D., Kobayashi R., and Stillman B. (1996). Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95-104.
28. Tyler J.K., Collins K.A., Prasad-Sinha J., Amiott E., Bulger M., Harte P.J., Kobayashi R., and Kadonaga J.T. (2001). Interaction between the Drosophila CAF-1and ASF1 chromatin assembly factors. Mol Cell Biol 21, 6574-6584.
29. Zhenbo H., Gary M.R., Jennifer R.S., Susan E.M., and Jill M.S. (unpublished data). The C.elegans Tousled-like TLK-1 contributes to mitotic chromosome segregation as a substrate and regulator of the Aurora B Kinase AIR2.
30. Hsu J.Y., Sun X., Li M., Reuben K., Tatchell D.K., Bishop J.M., Grushcow C.J., Brame J.A., Caldwell D.F., Hunt R., and Lin M.M. (2000). Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell. 102, 279–291.
31. Samantha G.Z., Richard D.S., and Kevin F.S. (2001). CENP-A is phosphorylated by Aurora B kinase and plays unexpected role in completion of cytokinesis. J. C. B. 155, 1147-1157.
32. Naoko K., Takashi S., Tomotoshi M., Dongwei Z., Shinobu H., Osamu K., Katsuyoshi H., Yukitaka U., Hideyuki S., and Toru H. (2003). CENP-A Phosphorylation by Aurora-A in prophase is required for enrichment of Aurora-B at inner centromere and for Kinetochore Function. Developmental Cell 5, 853-864.
33. Kamath R.S., and Ahringer J. (2003). Genome-wide RNAi screening in C.elegans. Methods. 30, 313-321
34. Liao H., Winkfein R.J., Mack G., Rattner J.B., and Yen T.J. (1995). CENP-F is a protein of the nuclear metrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J. C. B. 130, 507-518
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35520-
dc.description.abstract多細胞生物體中,TLK(tousled-like kinase)是一種保守的絲氨酸/蘇氨酸激酶家族,之前研究顯示,人類的TLK在細胞週期中S期作用於染色質的組成(chromatin assembly),以及果蠅的TLK在M期TLKs作用於染色體的濃縮。最近研究顯示,線蟲TLK-1在轉錄上扮演著重要角色。我們則發現tlk-1 (RNAi)突變體停留在約五十五個細胞時期,並具有大小不一致分怖的細胞核,由於非整倍體表型(aneuploidy)所造成。我們利用GFP 標示tubulin和組蛋白(histone) 的轉殖基因(transgenes),結果顯示tlk-1 (RNAi)突變體在有絲分裂時具有DNA濃縮和分離的缺失。我們另外發現著絲點蛋白(holocentric proteins) HCP-1/CENP-F和HCP-3/CENP-A在tlk-1 (RNAi)突變體的mitotic DNA有著不正常分佈。此外,在yeast two-hybrids實驗中,TLK-1可與HCP-3和HCP-4 /CENP-C結合。我們推論線蟲TLK-1控制HCP-1和HCP-3正確地排列在mitotic染色體的外側 (poleward face),是藉由與HCP-3和HCP-4的結合,進而影響在有絲分裂中染色體的濃縮與分裂。zh_TW
dc.description.abstractTLK, tousled-like kinase, is a family of conserved serine/ threonine kinase in multicellular organisms. Previous studies showed that human TLK functions in chromatin assembly at S phase and that Drosophila TLK acts in chromosome condensation at M phase during the cell cycle. Recent studies showed that C.elegans TLK-1 plays an essential role in transcription. We found that tlk-1 (RNAi) mutants arrested at about the 55-cell stage with uneven distribution of small and large nuclei due to aneuploidy. Using GFP to label tubulin and histone, we found that tlk-1 (RNAi) embryos have defects in DNA condensation and segregation during mitosis. We also found that holocentric proteins HCP-1/CENP-F and HCP-3/CENP-A are not properly localized to mitotic DNA in tlk-1 (RNAi) embryos. Furthermore, in the yeast-2 hybrid system TLK-1 interacts with HCP-3 and HCP-4/CENP-C. We propose that TLK-1 controls the proper localization of HCP-3 and HCP-1 to the poleward face of mitotic DNA, likely through direct interaction of TKL-1 with HCP-3 and HCP-4, and thereby functions in chromosome condensation and segregation during mitosis.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:56:35Z (GMT). No. of bitstreams: 1
ntu-94-R92b43004-1.pdf: 2431951 bytes, checksum: 5ac44c8a0a10f3f819355f1568a06afd (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents
Abstract…………………..……………………………………………4
中文摘要…………………………………………………………………5
Introduction………………..…………………………………………6
Materials and Methods…………………...…………….…………10
Caenorhabditis elegans Strains……………………..………...10
RNA mediated interference (RNAi)……………………………...10
DAPI staining …………………………………………….………..11
Time-lapse and z-series stacks microscopy……….………...11
Immunostaining……………………………………………....…….12
TOPOCloning………. …………………………………….....…….13
Gateway System…………………………………………….........14
Yeast two-hybrid assay……………………………….…....……14
Results………………………………………………..………………16
tlk-1 (RNAi) mutant causes the early embryonic lethality with aneuploidy phenotype…….………………….……………..16
tlk-1 (RNAi) mutant exhibited defects in chromosome condensation and segregation……….......….……………….17
C. elegans TLK-1 affects centromeric protein assembling on chromosome…………………….....………….………………....18
C. elegans holocentric protein does not affect the TLK-1 localization............................................19
C. elegans TLK-1 physically interacts with HCP-3 and HCP-4 in yeast two-hybrid system……………………..……………..20
Discussion……………………......………………………………21
Chromosome condensation and segregation defects in tlk-1 (RNAi)mutants……………….………………………………………21
C. elegans TLK-1 affects centromeric protein assembling on chromosome………………………………………………………....22
The possible phosphorylation site of HCP-3 and the function of the phosphorylation…….………………………..23
Figures and Tables………….…………………………………...24
References……………….………………………………………...36
dc.language.isoen
dc.title線蟲TLK-1影響染色體的著絲點組成zh_TW
dc.titleC. elegans TLK-1 Affects Holocentric Protein Assembly on Chromosomeen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳蕾惠(Rey-Huei Chen),黃奇英(Chi-Ying Huang),廖國楨(Gwo-Jen Liaw)
dc.subject.keyword著絲點,zh_TW
dc.subject.keywordTLK-1,en
dc.relation.page39
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved