Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35517
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李士傑
dc.contributor.authorPamela Lucille Yihen
dc.contributor.author易彥廷zh_TW
dc.date.accessioned2021-06-13T06:56:26Z-
dc.date.issued2011
dc.date.submitted2011-08-20
dc.identifier.citation1989. Cell interactions in the orchestration of development. Based on papers presented at the symposium The Cellular Basis of Morphogenesis. In honor of John Philip
Trinkaus. May 22-25, 1988, Woods Hole, Massachusetts. The Journal of experimental zoology 251, 121-264.
Ahmed, Z., Douglas, M.R., Read, M.L., Berry, M., Logan, A., 2011. Citron kinase regulates axon growth through a pathway that converges on cofilin downstream of RhoA. Neurobiology of Disease 41, 421-429.
Bokoch, G.M., 2000. Regulation of cell function by Rho family GTPases. Immunologic research 21, 139-148.
Carvalho, L., Heisenberg, C.P., 2010. The yolk syncytial layer in early, zebrafish development. Trends in Cell Biology 20, 586-592.
Cheng, J.C., Miller, A.L., Webb, S.E., 2004. Organization and function of microfilaments during late epiboly in zebrafish embryos. Developmental dynamics : an official publication of the American Association of Anatomists
231, 313-323.
Chien, M.-S., 2006. Molecular cloning, expression and functional analyses of citron kinase in zebrafish embryos, Institude of zoology. Nationa Taiwan University, 22
Taipei.
D'Avino, P.P., Savoian, M.S., Glover, D.M., 2004. Mutations in sticky lead to defective organization of the contractile ring during cytokinesis and are enhanced by Rho and suppressed by Rac. The Journal of cell biology 166, 61-71.
Di Cunto, F., Calautti, E., Hsiao, J., Ong, L., Topley, G., Turco, E., Dotto, G.P., 1998. Citron rho-interacting kinase, a novel tissue-specific ser/thr kinase encompassing the Rho-Rac-binding protein Citron. The Journal of biological chemistry 273, 29706-29711.
Di Cunto, F., Ferrara, L., Curtetti, R., Imarisio, S., Guazzone, S., Broccoli, V., Bulfone, A., Altruda, F., Vercelli, A., Silengo, L., 2003. Role of citron kinase in
dendritic morphogenesis of cortical neurons. Brain research bulletin 60, 319-327.
Echard, A., Hickson, G.R., Foley, E., O'Farrell, P.H., 2004. Terminal cytokinesis events uncovered after an RNAi screen. Current biology : CB 14, 1685-1693.
Glotzer, M., 2001. Animal cell cytokinesis. Annual review of cell and developmental biology 17, 351-386.
Goto, H., Kosako, H., Inagaki, M., 2000. Regulation of intermediate filament organization during cytokinesis: possible roles of Rho-associated kinase. Microscopy Research and Technique 49, 173-182. 23
Guertin, D.A., Trautmann, S., McCollum, D., 2002. Cytokinesis in eukaryotes. Microbiology and molecular biology reviews : MMBR 66, 155-178.
Hall, A., 1998. Rho GTPases and the actin cytoskeleton. Science 279, 509-514.
Holloway, B.A., Gomez de la Torre Canny, S., Ye, Y., Slusarski, D.C., Freisinger, C.M., Dosch, R., Chou, M.M., Wagner, D.S., Mullins, M.C., 2009. A novel role for
MAPKAPK2 in morphogenesis during zebrafish development. PLoS genetics 5, e1000413.
Kaibuchi, K., 1999. Regulation of cytoskeleton and cell adhesion by Rho targets. Progress in molecular and subcellular biology 22, 23-38. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages
of embryonic development of the zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 203, 253-310.
Koppen, M., Fernandez, B.G., Carvalho, L., Jacinto, A., Heisenberg, C.P., 2006. Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development 133, 2671-2681.
Kosako, H., Yoshida, T., Matsumura, F., Ishizaki, T., Narumiya, S., Inagaki, M., 2000. Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of
myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 19, 6059-6064. 24
Leung, T., Chen, X.Q., Tan, I., Manser, E., Lim, L., 1998. Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Molecular and cellular biology 18, 130-140.
LoTurco, J.J., Sarkisian, M.R., Cosker, L., Bai, J., 2003. Citron kinase is a regulator of mitosis and neurogenic cytokinesis in the neocortical ventricular zone. Cerebral
cortex 13, 588-591.
Madaule, P., Furuyashiki, T., Reid, T., Ishizaki, T., Watanabe, G., Morii, N., Narumiya, S., 1995. A novel partner for the GTP-bound forms of rho and rac. FEBS letters
377, 243-248.
Matsumura, F., Yamakita, Y., Yamashiro, S., 2011. Myosin light chain kinases and phosphatase in mitosis and cytokinesis. Archives of biochemistry and biophysics.
Molnar, G., Dagher, M.C., Geiszt, M., Settleman, J., Ligeti, E., 2001. Role of prenylation in the interaction of Rho-family small GTPases with GTPase activating proteins. Biochemistry 40, 10542-10549.
Naim, V., Imarisio, S., Di Cunto, F., Gatti, M., Bonaccorsi, S., 2004a. Drosophila citron kinase is required for the final steps of cytokinesis. Molecular biology of the
cell 15, 5053-5063.
Naim, V., Imarisio, S., Di Cunto, F., Gatti, M., Bonaccorsi, S., 2004b. Drosophila citron 25 kinase is required for the final steps of cytokinesis. Molecular biology of the cell 15, 5053-5063.
Narumiya, S., Ishizaki, T., Watanabe, N., 1997. Rho effectors and reorganization of actin cytoskeleton. FEBS letters 410, 68-72.
Ober, E.A., Schulte-Merker, S., 1999. Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Developmental Biology 215, 167-181.
Riento, K., Ridley, A.J., 2003. Rocks: Multifunctional kinases in cell behaviour. Nature Reviews Molecular Cell Biology 4, 446-456.
Rodaway, A., Takeda, H., Koshida, S., Broadbent, J., Price, B., Smith, J.C., Patient, R., Holder, N., 1999. Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 126, 3067-3078.
Sarkisian, M.R., Li, W., Di Cunto, F., D'Mello, S.R., LoTurco, J.J., 2002a. Citron-kinase, a protein essential to cytokinesis in neuronal progenitors, is deleted in the
flathead mutant rat. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, RC217.
Sarkisian, M.R., Li, W.W., Di Cunto, F., D'Mello, S.R., LoTurco, J.J., 2002b.
Citron-kinase, a protein essential to cytokinesis in neuronal progenitors, is deleted in the flathead mutant rat. Journal of Neuroscience 22, -.
Seong, Y.S., Min, C., Li, L., Yang, J.Y., Kim, S.Y., Cao, X., Kim, K., Yuspa, S.H., Chung, H.H., Lee, K.S., 2003. Characterization of a novel cyclin-dependent kinase 1 inhibitor, BMI-1026. Cancer research 63, 7384-7391.
Severson, A.F., Baillie, D.L., Bowerman, B., 2002. A Formin Homology protein and a profilin are required for cytokinesis and Arp2/3-independent assembly of cortical microfilaments in C. elegans. Current biology : CB 12, 2066-2075.
Shandala, T., Gregory, S.L., Dalton, H.E., Smallhorn, M., Saint, R., 2004. Citron kinase is an essential effector of the Pbl-activated Rho signalling pathway in Drosophila melanogaster. Development 131, 5053-5063.
Somlyo, A.P., Somlyo, A.V., 2000. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. The Journal of physiology 522 Pt 2, 177-185.
Somlyo, A.V., Bradshaw, D., Ramos, S., Murphy, C., Myers, C.E., Somlyo, A.P., 2000. Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochemical and biophysical research communications 269, 652-659.
Thissen, J.A., Casey, P.J., 1993. Microsomal membranes contain a high affinity binding site for prenylated peptides. The Journal of biological chemistry 268,13780-13783.
Yasui, Y., Amano, M., Nagata, K., Inagaki, N., Nakamura, H., Saya, H., Kaibuchi, K., Inagaki, M., 1998. Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. The Journal of cell biology 143, 1249-1258.
Zalik, S.E., Lewandowski, E., Kam, Z., Geiger, B., 1999. Cell adhesion and the actin cytoskeleton of the enveloping layer in the zebrafish embryo during epiboly. Biochemistry and cell biology = Biochimie et biologie cellulaire 77, 527-542.
Zhao, Z.S., Manser, E., 2005. PAK and other Rho-associated kinases--effectors with surprisingly diverse mechanisms of regulation. The Biochemical journal 386, 201-214.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35517-
dc.description.abstractCitron kinase (CRIK)為一種可活化Rho 的下游的絲胺酸-羥丁胺酸激酶。過去的研究認為CRIK 在調節哺乳類動物的細胞質裂中扮演很重要的角色。例如,在CRIK 缺乏的小鼠中,會產生不正常的細胞質裂和神經發育而造成嚴重的癲癇並於三週內死亡,但其機制還不太了解。
我們以斑馬魚為模式動物來研究CRIK 在細胞質裂和其他生物反應過程中的作用。我們收集了從雙細胞到發育24 小時間不同發育程度的胚胎進行原位雜交,發現細胞分裂早期crik 廣泛分布在整個胚體,到了256 細胞期後則特別聚集在卵黃與胚體交接之空腔層(yolk syncytial layer, YSL),到10 個體節時期crik 也表現在神經上。為進一步瞭解crik 在斑馬魚發育中的功能,我們設計了兩個MO,來抑制crik 的轉譯。經顯微注射的胚胎出現細胞分裂、外包的缺陷、甚至死亡,直接打入crik 的mRNA 即可部分減少這些缺陷,進一步證明crik 的缺乏會造成上述缺陷。更仔細觀察MO 處理過的胚胎,出現多核細胞的比例對照組高出許多,而總細胞數則相對的較少推測是不完全的細胞質裂造成的結果。另外,當我們直接將MO 顯微注射到YSL 時,造成的缺陷更為嚴重,且出現明顯外包行為的問題,進
而影響胚胎的原腸化。因此我們推論在早期斑馬魚胚胎發育時期,CRIK 特別表現在YSL 影響著細胞質裂和外包行為。
zh_TW
dc.description.abstractCitron kinase (CRIK) is a serine-threonine kinase and a Rho effector kinase. Previously, CRIK has been suggested to play a role in regulating cytokinesis in mammalian cells. CRIK depleting mice shows abnormal cytokinesis and defective
neurogenesis, and then causes severe epilepsy and died in 3 weeks. The results suggest that CRIK is involved in cytokinesis, but the mechanism is not clear.
To elucidate the actions of CRIK in cytokinesis and other biological processes, we used zebrafish as a model. In this study, we perform whole-mount in situ hybridization of series developmental stages of zebrafish embryos from two-cell stage to 24-hpf embryos to observe the temporal and spatial expression patterns of crik during embryogenesis. We found crik expressed ubiquitous in whole blastomere at early cleavage stages but specifically accumulate at the yolk syncytial layer (YSL) in the other early developmental stages after 256-cell stage and also expressed in neurons after 10-somite stage. To further study the function of crik in zebrafish development, we designed two translational blocking morpholino oligonucleotides (tMO) to knockdown crik expression and overexpress. The loss of function of crik resulted in dose-dependent defects, including cell division, epiboly defect and even embryonic death. The fact that those defect morphology was specifically induce by crik knockdown was strongly proved by the rescue experiment. The knockdown defect phenotype can be partially rescue by crik mRNA. Besides, stronger epiboly defect was observed when MOs were injected into YSL. We suggest that CRIK expressed in YSL and affected not only cytokinesis but also epiboly in early embryonic developmental stage in zebrafish.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:56:26Z (GMT). No. of bitstreams: 1
ntu-100-R98b41020-1.pdf: 938613 bytes, checksum: 9574e49021bbc16ba395c92250ef7c4a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 ................................................. I
ABSTRACT ................................................ II
INTRODUCTION ............................................. 1
Materials and Methods .................................... 5
Fish maintenance and embryo collection ................... 5
Antisense morpholino oligonucleotides design and preparation .............................................. 5
Crik kinase domain mRNA synthesis ................................................ 6
Microinjection and observation ........................... 7
Whole mount in situ hybridization ........................ 7
DIC time-lapse imaging of cell cleavage recording ........ 8
Results .................................................. 9
Expression pattern of crik during zebrafish development .. 9
Knockdown of citron kinase caused embryonic defects in zebrafish development .................................... 9
Knockdown of crik caused cytokinesis defect ............. 12
Specific knockdown at YSL caused severe epiboly defect... 13
Discussion .............................................. 14
CRIK homologue of different species ..................... 15
ROCK and Citron kinase .................................. 17
CRIK in YSL affect epiboly and gastrulation formation ... 17
CRIK regulate cytokinesis in developing CNS ............. 19
References .............................................. 21
Figures ................................................. 28
Figure 1. Whole mount in situ hybridization of citron kinase. ................................................. 28
Figure 2. Design and efficiency check of translational blocking MOs............................................. 29
Figure 3. Knockdown of citron kinase causes cleavage and gastrulation defects. ................................... 31
Figure 4. The citron kinase MO-induced defects can be specifically rescued by co-injection of citron kinase catalytic domain mRNAs. ................................. 33
Figure 5. Knockdown of citron kinase causes cytokinesis defect. ................................................. 34
Figure 6. Specific localization Knockdown of citron kinase causes severe epiboly defect. ........................... 36
APPENDIX ................................................ 37
Fig. 1. In silico cloning of domain analysis of zebrafish citron kinase. .......................................... 38
Fig. 2. The nucleotide sequence of zebrafish citron kinase. ................................................. 42
Fig. 3. Amino acid similarity comparison and phylogenetic tree analysis of citron kinase homologs. ................ 43
Fig. 4 RT-PCR analyses of citron kinase in different adult tissues. ................................................ 44
Fig. 5 Overexpression of citron kinase domain disrupts the progression of epiboly. ................................. 45
Fig. 6. Knockdown of citron kinase by MO aborts the formation of both head structure and central nervous system. ................................................. 46
dc.language.isoen
dc.titleCitron Kinase 在斑馬魚胚胎發育中扮演的角色zh_TW
dc.titleThe Roles of Citron Kinase in Zebrafish Embryogenesisen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee丁詩同,沈湯龍
dc.subject.keyword外包,細胞質裂,卵黃與胚體交接之空腔層,zh_TW
dc.subject.keywordCitron kinase,epiboly,cytokinesis,yolk syncital layer,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2011-08-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
Appears in Collections:動物學研究所

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
916.61 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved