Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35515
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor呂理平
dc.contributor.authorCHI HUen
dc.contributor.author胡琦zh_TW
dc.date.accessioned2021-06-13T06:56:20Z-
dc.date.available2006-08-18
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-28
dc.identifier.citationAdanez, J., L. F. de Diego and P. Gayan, “Transport Velocities of Coal and Sand Particles”, Powder Technol. 77, 61-68 (1993).
Bai, D., Y. Jin and Z. Yu, “Flow Regimes in Circulating Fluidized Beds”, Chem. Eng. Technol., 16, 307-313 (1993).
Bai, D. R., Y. Jin, Z. Q. Yu and J. X. Zhu, “The Axial Distribution of The Cross-sectionally Average Voidage In Fast Fluidized Beds”, Powder Technol., 71, 51-58 (1992).
Bi, H. T. and J. Zhu, “Static Instability Analysis of Circulating Fluidized Bed and the Concept of High Density Riser”, AIChE J., 39, 1272-1280 (1993).
Bi, H. T. and J. R. Grace, “Flow Regime Diagrams for Gas-Solid Fluidization and Upward Transport”, Int. J. Multiph. Flow, 21,1229-1236 (1995).
Geldart, D., “Type of Gas Fluidization”, Powder Tcehnol., 7, 285-292 (1973).
Grace, J. R., “Contacting Modes and Behaviour Classification of Gas-Solid and Other Two-Phase Suspensions”, Can. J. Chem. Eng., 64, 353-363 (1987).
Horio, M., H. Isbii and M. Nishimuro, “On the Nature of Turbulent and Fast-Fluidized Beds”, Power Technol., 70, 229-236 (1992).
Knowlton, T. M., “Solid Transfer in Fluidized Systems”, in Gas Fluidization Technology, D. Geldart, Eds., pp. 341-414, Wiley, New York (1986).
Knowlton, T. M. and I. Hirsan, “L-valve Characterized for Solids Flow”, Hydrocarbon Processing, March, 149-156 (1978).
Kunii, D. and O. Levenspiel, “Fluidization Engineering”, Butterworth-Heinemann, Boston, MA, U.S.A. (1991).
Leung, L. S., “A Quantitative Design Procedure for Vertical Pneumatic Conveying Systems”, Ind. Eng. Chem. Proc. Des. Dev., 15, 552-557(1976).
Li, J., Y. Tung and M. Kwauk, “Axial Voidage Profile of Fluidized Beds in Different Operating Regions”, in “Circulating Fluidized Bed Technology II”, P. Basu and J. F. Large, Eds., pp. 193-203, Pergamon Press, Oxford (1988).
Namkung, W., S. W. Kim and S. D. Kim, “Flow Regimes and Axial Pressure Profiles in a Circulating Fluidized Bed”, Chem. Eng. J., 72, 245-252 (1999).
Perales, J. F., T. Coll., M. F. Llop., L. Puigjaner., J. Arnaldos and J. Casal, “ On the Transition From Bubbling to Fast Fluidization Regimes“, in “Circulating Fluidized Bed Technology III”, P. Basu, M. Horio and M. Hastami, eds., p. 73-78, Pergamon press, Oxford, Great Britain (1991).
Schwieger, B., “Fluidized-Bed Boilers Achieve Commercial Status Worldwide ”, Power, February, S1-S16 (1985).
Takeuchi, H., T. Hirama, T. Chiba, J. Biswas and L. S. Leung, “A Quantitative Definition and Flow Regime Diagram for Fast Fluidization”, Powder Technol., 47, 195-199 (1986).
Weinstein, H., M. Meller., M. J. Shao and R. J. Parisi, “The Effect of Particle Density on Holdup in a Fast Fluidized Bed”, AIChE. Symp. Ser., vol. 80, no. 234, 52-59 (1984).
Yerushalmi, J. and A. Avidan, “High-Velocity Fluidization”, in “Fluidization”, J. F. Davidson, R. Clift and D. Harrison, Eds., pp. 225-291, Academic Press, London, GB (1986).
Yerushalmi, J. and N. T. Cankurt, “Further Studies of the Regimes of Fluidization”, Powder Technol., 24, 187-205 (1979).
Yerushalmi, J., N. T. Cankurt., D. Geldart and B. Liss, “Flow Regime in Vertical Gas-Solid Contact System”, AIChE Symp. Ser., vol. 74, no. 176, 1-13 (1978).
白丁榮、金涌和俞芷青, “循環流態化:(VI)反應器行為及其模式”, 化學反應工程與工藝, 8(3), 302-313(1992).
白丁榮、金涌和俞芷青,“循環流態化(II):氣-固流動規律”, 化學反應工程與工藝, 7(3), 303-317(1991)
白丁榮、金涌、俞芷青和姚文虎, “快速流態化兩通道模型”, 化工學報, 第一期, 10 (1990).
李靜海,“兩相流多尺度作用模型和能量最小方法”, 博士學位論文, 159-163. (1987). [引用自金涌、祝京旭、汪展文和俞芷青, ”流態化工程原理”, 清華大學出版社, 126 (2001).]
陳靖良,”循環流體化床中氣固流動現象及床-壁間熱傳導之研究”, 台灣大學化學工程研究所博士學位論文, (1991).
黃文濬, “循環式流體化床之壓力擾動訊號分析”, 台灣大學化學工程研究所碩士學位論文, (2002).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35515-
dc.description.abstract本實驗使用高7m與內徑0.108m循環式流體化床,以平均粒徑155μm、密度為2615kg/m3之砂為床體粒子。以氣體速度和固體流量兩個操作變數,來界定循環式流體化床中快速流體化區域的操作範圍。以壓力探針測量上升床中之局部壓力及壓差擾動訊號,並經統計方法得到的標準偏差和冪次頻譜密度函數來討論不同流態的特徵。
在固定固體循環量下,漸漸減低氣速,由稀相輸送流態進入快速流體化流態之流域轉變,以床中各段之壓力梯度約相等的氣體流速Uc2作為稀相輸送流態和快速流體化流態之轉換速度。而繼續減低氣速,床中壓降呈現遞增趨勢,當流態由快速流體化進入紊流流態時,其固體循環量無法穩定維持,此時氣體速度Uc1作為快速流體化和紊流流態之轉換速度。
對Geldart B類粒子而言,軸向平均空隙度分佈是隨著表面氣體速度與粒子循環量的變化而變;低固體循環量及高氣體速度下表現單一平均空隙度的分佈,而高固體循環量及低氣體速度下則表現出底部空隙度小頂部空隙度大的單調指數分佈。
以床中兩點間的壓差擾動訊號經冪次頻譜密度函數分析發現,床底所得的頻譜圖隨著流態的不同有明顯能量上的差距,故可以區分在快速流體化、紊流流態及稀相輸送的差別。
zh_TW
dc.description.abstractThe flow characteristics of Geldart group B powder (sand; =155 μm) in fast fluidization bed were investigated by instantaneous pressure signals in a circulating fluidized bed (0.108 m i.d. and 7m height) by using non-mechanical valve (L-vale) to control the flow rate of solid particles.
It was found that for the transition from dilute phase convey to fast fluidization, the transition point was determined by plotting pressure gradients measured both at the top and the bottom of the riser. As the gas velocity is gradually reduced at the fixed solid flux, a critical gas velocity (Uc2)would be reached at which two distinct regions in the riser appear. Further reduction of the gas velocity below Uc2 at the same constant solid flux, a point (Uc1)will eventually be reached when steady operation at the given solid flux becomes impossible. The transition between fast fluidization and turbulent occurred at transition velocity Uc1.
For Geldart group B particles, the axial bed average voidage distribution in the solid riser changes with superficial gas velocity and solid circulation rates. Dilute phase convey appears for low solid circulation rates or high superficial gas velocity, fast fluidization appears for high solid circulation rates or low superficial velocities.
At fast fluidization, the power spectrum density function of differential pressure fluctuation signals in the bottom region of dense phase was well defined. So the region transition from turbulent to dilute phase convey was determined by the power spectrum density function of differential pressure fluctuation signals.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:56:20Z (GMT). No. of bitstreams: 1
ntu-94-P92524001-1.pdf: 3243051 bytes, checksum: 1c43912d92dd9eed08bc109c641904d5 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要…………………………………………………………………………….I
英文摘要...........................................................................................................II
目錄………………………………………………………………………………….III
圖表索引…………………………………………………………………………….V
第一章 緒論………………………………………………………………………1
1-1.前言…………………………………………………………………..1
1-2.循環流體化床的應用與發展………………………………………..2
1-3.研究目的……………………………………………………………..5
第二章 文獻回顧………………………………………………………………….6
2-1.由氣泡床轉變成快速流體化之情形………………………………...6
2-2.快速流體化流態轉變情形…………………………………………...8
2-3.軸向濃度分佈結構描述……………………………………………...13
第三章 實驗裝置與步驟.........................................................................................20
3-1.循環式流體化床的實驗裝置………………………………………...20
3-2.循環式流體化床之實驗步驟………………………………………...28
3-2-1.快速流體化流域界定…………………………………………..28
3-2-2.軸向空隙度分佈………………………………………………..29
3-3.循環式流體化床固體控制元件之操作.........................................30
3-4.壓力擾動訊號處理…………………………………………………...33
3-5.固體流量計流量處理…………………………………………………33
3-6.數據分析……………………………………………………………...33
3-6-1.標準偏差(standard deviation)…………………………………….34
3-6-2.冪次頻譜密度函數(power spectral density function簡稱…….34
P.S.D.F)
3-7.實驗固體粒子性質……………………………………………………35
第四章 結果與討論………………………………………………………………..37
4-1.快速流體化流域的界定………………………………………………..37
4-1-1.快速流體化區域與稀相輸送區域之間的轉換速度界定……...37
4-1-2.快速流體化區域與紊流區域之間的轉換速度界定…………...40
4-1-3.輸送速度Utr的界定…………………………………………….40
4-2.截面平均床空隙度之軸向分佈………………………………………..47
4-2-1.固體循環量對軸向分佈之探討………………………………..47
4-2-2.探討改變粒子儲料量下之軸向分佈…………………………..53
4-3.快速流體化流域的壓力擾動訊號分析………………………………..58
4-3-1.單點壓力擾動訊號分析………………………………………..58
4-3-2.兩點間壓力擾動訊號分析……………………………………..68
第五章 結論……………………………………………………………………….79
第六章 符號說明………………………………………………………………….81
第七章 參考文獻………………………………………………………………….84
第八章 附錄.............................................................................................................87
附錄A.衝擊式固體流量計操作原理說明………………………………...87
附錄B.衝擊式固體流量計校正說明……………………………………...89
附錄C. Labview數據截取程式…………………………………………...90
dc.language.isozh-TW
dc.subject循環式流體化床zh_TW
dc.subject快速流體化床zh_TW
dc.subjectFast fluidized beden
dc.subjectCirculating fluidized beden
dc.title利用壓力擾動訊號來界定B類粒子快速流體化流域zh_TW
dc.titleCharacterization of Fast Fluidization Regime of Geldart Group B Particles by Pressure Fluctuation Signalsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王大銘,王榮基
dc.subject.keyword快速流體化床,循環式流體化床,zh_TW
dc.subject.keywordFast fluidized bed,Circulating fluidized bed,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
3.17 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved