請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35487完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何鏡波(Keang-Po Ho) | |
| dc.contributor.author | Jen-An Huang | en |
| dc.contributor.author | 黃仁安 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:55:01Z | - |
| dc.date.available | 2005-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-27 | |
| dc.identifier.citation | [1] A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.,
vol. 23, pp. 115-130, 2005. [2] P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25 Gb/s RZ-DQPSK signals with 25 GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon. Technol. Lett., vol. 15, pp. 473-475, 2003. [3] N. Yoshikane and I. Morita, “1.14 b/s/Hz spectrally-efficient 50 × 85.4 Gb/s transmission over 300 km using copolarized CS-RZ DQPSK signals,” in Proc. OFC 2004, Los Angeles, CA, postdeadline paper PDP38. [4] A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, “2.5 Tb/s (64 × 42.7 Gb/s) transmission over 40 × 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans,” in Proc. OFC 2002, Anaheim, CA, postdeadline paper FC2, pp. 875-877. [5] J. X. Cai, D. G. Foursa, L. Liu, C. R. Davidson, Y. Cai, W. W. Patterson, A. J. Lucero, B. Bakhshi, G. Mohs, P. C. Corbett, V. Gupta, W. Anderson, M. Vaa, G. Domagala, M. Mazurczyk, H. Li, M. Nissov, A. N. Pilipetskii, and N. S. Bergano, “RZ-DPSK field trial over 13,100 km of installed non slope-matched submarine fibers,” in Proc. OFC 2004, Los Angeles, CA, 2004, postdeadline paper PDP34. [6] C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D.Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40 G transmission over trans-Pacific distance (10,000 km) casing CSRZ-DPSK, enhanced FEC and all-Raman amplified 100 km UltraWave fiber spans,” in Proc. OFC 2003, Atlanta, GA, postdeadline paper PD18. [7] K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, S. Kuroda, and T. Mizuochi, “A comparative study of 10 Gb/s RZ-DPSK and RZ-ASK WDM transmission over transoceanic distances,” in Proc. OFC 2003, Atlanta, GA, 2003, paper ThE2. [8] G. Vareille, L. Becouarn, P. Pecci, P. Tran, and J. F. Marcerou, “8370 km with 22 dB spans ULH transmission of 185 10.709 Gbit/s RZ-DPSK channels,” in Proc. OFC 2003, Atlanta, GA, 2003, postdeadline paper PD20. × [9] J. X. Cai, D. G. Foursa, L. Liu, C. R. Davidson, Y. Cai, W. W. Patterson, A. J. Lucero, B. Bakhshi, G. Mohs, P. C. Corbett, V. Gupta, W. Anderson, M. Vaa, G. Domagala, M. Mazurczyk, H. Li, M. Nissov, A. N. Pilipetskii, and N. S. Bergano, “A DWDM demonstration of 3.73 Tb/s over 11,000 km using 373 RZ-DPSK channels at 10 Gb/s,” in Proc. OFC 2003, Atlanta, GA, 2003, postdeadline paper PD22. [10] L. Becouarn, G. Vareille, P. Pecci, and J. F. Marcerou, “3 Tbit/s transmission (301 DPSK channels at 10.709 Gb/s) over 10,270 km with a record efficiency of 0.65 bit/s/Hz,” in Proc. ECOC 2003, Rimini, Italy, 2003, postdeadline paper Th4.3.2. [11] B. Zhu, L. Leng, A. H. Gnauck, M. O. Pedersen, D. Peckham, L. E. Nelson, S. Stulz, S. Kado, L. Gruner-Nielsen, R. L. Lingle Jr, S. Knudsen, J. Leuthold, C. Doerr, S. Chandrasekhar, G. Baynham, P. Gaarde, Y. Emori, and S. Namiki, “Transmission of 3.2 Tb/s (80 42.7 Gb/s) over 5200 km of Ultrawave fiber with 100 km dispersion-managed spans using RZ-DPSK format,” in Proc. ECOC 2002, Copenhagen, Denmark, 2002, postdeadline paper PD4.2. × [12] B. Zhu, L. E. Nelson, S. Stulz, A. H. Gnauck, C. Doerr, J. Leuthold, L. Gruner-Nielsen, M. O. Pedersen, J. Kim, R. Lingle Jr, Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri, and S. Namiki, “6.4 Tb/s (160 × 42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32 100 km of fiber using CSRZ-DPSK format,” in Proc. OFC 2003, Atlanta, GA, 2003, postdeadline paper PD19. × [13] T. Tsuritani, K. Ishida, A. Agata, K. Shimomura, I. Morita, T. Tokura, H. Taga, T. Mizuochi, and N. Edagawa, “70 GHz-spaced 40 × 42.7 Gbit/s transmission over 8700 km using CS-RZ DPSK signal, all-Raman repeaters and summetrically dispersion-managed fiber span,” in Proc. OFC 2003, Atlanta, GA, 2003, postdeadline paper PD23. [14] I. Morita and N. Edagawa, “50 GHz-spaced 64 × 42.7 Gbit/s transmission over 8200 km using pre-filtered CS-RZ DPSK signal and EDFA repeaters,” in Proc. ECOC 2003, Rimini, Italy, 2003, postdeadline paper Th4.3.1. [15] G. Charlet, J. Lazaro, E. Corbel, P. Tran, A. Klekamp, T. Lopez, H. Mardoyan, W. Idler, A. Konczykowska, J.-P. Thiery, R. Dischler, and S. Bigo, “One-hundred WDM-channel transatlantic transmission experiment at 43 Gbit/s using Raman repeaters with large 65 km spacing,” in Proc. ECOC 2003, Rimini, Italy, 2003, postdeadline paper Th4.3.3. [16] G. Charlet, E. Corbel, J. Lazaro, A. Klekamp, R. Dischler, P. Tran, W. Idler, H. Mardoyan, A. Konczykowska, F. Jorge, and S. Bigo, “WDM transmission at 6 Tbit/s capacity over transatlantic distance, using 42.7 Gb/s differential phase-shift keying without pulse carver,” in Proc. OFC 2004, Los Angeles, CA, 2004, postdeadline paper PDP36. [17] K. P. Ho, “Error probability of DPSK signals with intrachannel four-wave-mixing in highly dispersive transmission systems,” IEEE Photon. Technol. Lett., vol. 17, pp. 789-791, 2005. [18] K. P. Ho, “Impact of nonlinear phase noise to DPSK signals: A comparison of different models,” IEEE Photon. Technol. Lett., vol. 16, pp. 1403-1405, 2004. [19] K. P. Ho and H. C. Wang, “Comparison of nonlinear phase noise and intrachannel four-wave-mixing for RZ-DPSK signals in dispersive transmission systems,” IEEE Photon. Technol. Lett., vol. 17, pp. 1426–1428, 2005. [20] H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett., vol. 15, pp. 320-322, 2003. [21] K. P. Ho, “Performance of DPSK signals with nonlinear phase noise for systems with small Number of fiber spans,” 2004 IEEE/LEOS Workshop on Advanced Modulation Formats, San Francisco, CA, paper ThC4, pp. 19-20. [22] J. Wang and J. M. Kahn “Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection,” J. Lightwave Technol., vol. 22, pp. 362-271, 2004. [23] K. P. Ho, Phase-Modulated Optical Communication Systems, New York: Springer-Verlag, 2005. [24] J. G. Proakis, Digital Communication, New York: McGraw Hill, 4th edition , 2000. [25] G. P. Agrawal, Nonlinear Fiber Optics, San Diego: Academic Press, 3th edition. 2003. [26] J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communication systems using linear amplifiers,” Opt. Lett., vol. 15, pp. 1351-1353, 1990. [27] K. P. Ho, “Asymptotic probability density of nonlinear phase noise,” Opt. Lett., vol. 28, pp. 1350–1352, 2003. [28] K. P. Ho, “Probability density of nonlinear phase noise,” Journal of the Optical Society of America B: Optical Physics, vol. 20, no. 9, pp. 1875-1879, 2003. [29] R. H. Stolen and A. Ashkin.” Optical Kerr effect in glass waveguide,” Appl. Phys. Lett. vo. 22, pp. 294-295, 1973. [30] S. K. Turitsyn, E. G. Turitayana, V. K. Mezentaev, and M. P. Fedoruk, “On the theory of intra-channel four-wave mixing,” Lasers and Electro-Optics Europe, 2000, Conference Digest. 2000, paper CThE42. [31] J. Wang and J. M. Kahn, ”Conventional DPSK versus symmetrical DPSK: comparison of dispersion tolerances,” IEEE Photon. Technol. Lett., vol. 16, pp. 1585 – 1587, 2004. [32] A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7 Gb/s DPSK receiver with 45 photon/bit sensitivity,” IEEE Photon. Technol. Lett., vol. 15, pp. 99-101, 2003. [33] E. A. Swanson, J. C. Livas, and R. S. Bondurant, “High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization,” IEEE Photon. Technol. Lett., vol. 6, pp. 263-265, 1994. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35487 | - |
| dc.description.abstract | 此論文分析自相位調變(self-phase modulation)所引發的非線性相位雜訊的離散以
及連續模型。非線性相位雜訊和接收電場的聯合特徵函式被導出並用來求得接收相位 訊號的機率分布。其中,近似以及精確的相位移鍵調變(BPSK)和相位差分調變(DPSK) 信號的機率密度函式的數學解析式被導出;精確模型考慮了非線性相位雜訊以及放大 器雜訊相位的非獨立關係,而近似模型假設非線性相位雜訊和放大器雜訊相位是獨立 的。分別在離散及連續的模型下,精確以及近似的相位移鍵調變和相位差分調變信號 錯誤機率被計算並比較。 非線性相位雜訊的理論由一組光跨距(fiber span)所組成最小實驗架構來驗證,其 中含有一個光放大器以及一段固定距離的光纖。訊號雜訊比罰分(signal-to-noise ratio penalty)被用來評估計算系統的效能降低,而此效能降低是受到非線性相位雜訊的影 響。實驗的結果顯示 在簡化的匹配濾波器分析下所得出的訊號雜訊比罰分,可以更 普遍的適用在一般的接受器。實驗量測結果與理論分析差距只有在0.15 分貝(dB)。 | zh_TW |
| dc.description.abstract | Both discrete and distributed models of the self-phase modulation (SPM) induced nonlinear
phase noise are derived. The joint characteristic function of the received electric field and the nonlinear phase noise is provided for both discrete and distributed models. Both approximated and exact probability density function for BPSK and DPSK systems are given by an analytical expression. The exact model includes the dependence between the nonlinear phase noise and the phase of amplifier noise, and the approximated model assumes the independence between nonlinear phase noise and the phase of amplifier noise. Both exact and approximated error probabilities for BPSK and DPSK systems are evaluated in both discrete and distributed models, and compared with each other. A single-span experimental setup, the minimal setup to study the nonlinear phase noise, is proposed to verify the theoretical model of SPM-induced nonlinear phase noise by the measurement of signal-to-noise ratio (SNR) penalty. The experimental results show that the SNR penalty from the simplified matched-filter based analysis is applicable to more general receivers.The discrepancy between the results of the experiment and the theory is within ±0.15 dB. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:55:01Z (GMT). No. of bitstreams: 1 ntu-94-R92942077-1.pdf: 1256692 bytes, checksum: ff16e9104597de0f1a442b5fa88dce03 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Contents ii
List of Figures iv List of Tables vi Acknowledgements vii 1 Introduction to Optical Communication Systems 1 1.1 Introduction 1 1.2 DPSK Transmitter 6 1.3 DPSK Receiver 10 1.4 Fiber Channel 11 1.5 Erbium-doped fiber amplifier (EDFA) 12 2 Nonlinear Phase Noise 13 2.1 Nonlinear Kerr effects 13 2.2 SPM-induced nonlinear phase noise 15 2.3 Mathematical model 15 2.3.1 Discrete model of nonlinear phase noise 16 2.3.2 The distributed model of nonlinear phase noise 31 3 Experimental Verification of the Model of Nonlinear Phase Noise 42 3.1 Themathematical model of the experiment 42 3.2 Setup of the experiment 47 3.3 Experimental results 50 4 Conclusion 55 5 Bibliography 57 | |
| dc.language.iso | en | |
| dc.subject | 差分相位調變 | zh_TW |
| dc.subject | 光纖通訊 | zh_TW |
| dc.subject | 非線性相位雜訊 | zh_TW |
| dc.subject | 實驗 | zh_TW |
| dc.subject | nonlinear phase noise | en |
| dc.subject | DPSK | en |
| dc.subject | experiment | en |
| dc.subject | optical fiber communication | en |
| dc.title | 非線性相位雜訊對高速相位調變光通訊系統之
影響及驗證 | zh_TW |
| dc.title | Effect of Nonlinear Phase Noise on Phase-Shift
Keying Signals in Lightwave Systems and Its Experimental Verification | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳靜雄(Jing-Shown Wu),廖顯奎(Shien-Kuei Liaw),蘇炫榮(Hsuan-Jung Su),何旻真(Min-Chen Ho),馮開明(Kai-Ming Feng) | |
| dc.subject.keyword | 光纖通訊,非線性相位雜訊,實驗,差分相位調變, | zh_TW |
| dc.subject.keyword | optical fiber communication,nonlinear phase noise,experiment,DPSK, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
