請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35486
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱奕鵬(Yih-Peng Chiou) | |
dc.contributor.author | Chi-Her Le | en |
dc.contributor.author | 李騏合 | zh_TW |
dc.date.accessioned | 2021-06-13T06:54:58Z | - |
dc.date.available | 2007-07-29 | |
dc.date.copyright | 2005-07-29 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-27 | |
dc.identifier.citation | [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phy. Rev. Lett., vol. 58, pp. 2059-2062, 1987.
[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phy. Rev. Lett., vol. 58, pp. 2486-2489, 1987. [3] T. Baba, and M. Nakamura, “photonic crystal light deflection devices using the superprism effect,” IEEE J. Quantum Electron., vol. 38, pp. 909-914, 2002. [4] L. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planarphotonic crystals: from superprism to supercollimator,” IEEE J. Lightwave Tech., vol. 21, pp. 561-566, 2003. [5] R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev., vol. 48, pp. 928-936, 1935. [6] A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt., vol. 4, pp. 1275-1297, 1965. [7] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp. 667-669, 1998. [8] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, 1966. [9] R. M. Joseph, S. C. Hagness, and A. Taflovc, “Direct time integration of Maxwcll’s equations in linear dispersive media with absorption for scatteriug and propagation of femtosecond Electromagnetic Pulses,” Opt. Lett., vol. 16, pp. 1412-1414, 1991. [10] R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A frequencydependent Finite-diffcreuce time-domain formulation for transicnt propagation in plasma,” IEEE Trans. Antennas Propagat., Vol. AP- 39, pp. 29-34, 1991. [11] J. L. Young, “A full finite difference time domain implementation for radio wave propagation in a plasma,” Radio Sci., vol. 29, pp. 1513-1522, 1994. [12] L. J. Nickisch and P. M. Franke, “finite-difference time-domain solution of Maxwell’s equations for the dispersive ionosphere,” IEEE Antennas Propagat. Mag., vol. 34, pp. 33-39, 1992. [13] S. A. Cummer, “An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy,” IEEE Trans. Antennas Propagat., vol. 45, pp. 392-400, 1997. [14] N. W. Ashcroft and N. D. Mermin, Solid State Physics, New York: Holt. Rinehart and Winston, 1976. [15] W. Liniger and R. A. Willoughby, “Efficient integration methods for stiff systems of ordinary differential equations,” SIAM J. Numer. Anal., vol. 7, pp. 47-66, 1970. [16] J. P. B´erenger, “A perfect matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185-200, 1994. [17] S. A. Cummer, “A simple, nearly perfectly matched layer for general electromagnetic media,” IEEE Microwave Wireless Lett., vol. 13, pp. 128-130, 2003. [18] J. P. B´erenger, “On the reflection from Cummer’s nearly perfectly matched layer,” IEEE Microwave Wireless Lett., vol. 14, pp. 334- 336, 2004. [19] W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates” Microwave Opt. Technol. Lett., vol. 7, pp. 599-604, 1994. [20] J. G Fleming, S. Y. Lin, I. El-Kady, R.Biswas and K. M. Ho, “Allmetallic three-dimensional photonic crystals with a large infrared bandgap,” Nature, vol. 417, pp. 52-55, 2002. [21] S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett., vol. 83, pp. 380-382, 2003. [22] G. Guiffaut and K. Mahdjoubi, “A parallel FDTD algorithm using the MPI library,” IEEE Antennas Propagat. Mag. vol. 43, pp. 94-103, 2001. [23] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., Boston, Artech House, 2000. [24] M. A. Ordal, L. L Long, R. J. Bell, R. R. Bell, R. W.Alexander, Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. vol. 22, pp. 1099-1119, 1983. [25] S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho “Origin of absorption enhancement in a tungsten threedimensional photonic crystal,” J. Opt. Soc. Am. B, vol. 20 , pp. 1538-1541, 2003. [26] Z. Y. Li, I. El-Kady, R. Biswas, K. M. Ho S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys., vol. 93, pp. 38-41, 2003. [27] W. K. Pratt , Digital Image Processing, 3rd ed., New York: Wiley, 2001. [28] A. Dechant and A.Y.Elezzabi, “Femtosecond optical pulse propagation in subwavelength metallic slits,” Appl. Phys. Lett., vol. 84, pp. 4678-4680, 2004. [29] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett., vol. 83, pp. 2845-2848, 1999. [30] H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express, vol. 11, pp. 1700-1808, 2003. [31] P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18-um complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A, vol. 20, pp. 2293-2306, 2003. [32] J. Adams, K. Parulski, and K. Spaulding, “Color processing in digital cameras,” IEEE Micro, vol. 18, pp. 20-30, 1998. [33] I. El-Kady, M.M.Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B, vol. 93 , pp. 15299-15302, 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35486 | - |
dc.description.abstract | 在本篇論文中,我們將探討週期性金屬結構的現象及應用,
包含金屬光子晶體,金屬光柵。 在金屬光子晶體方面,利用鎢作為光子晶體材料,則有很大的潛力作為高效率的發光材料, 我們利用有限時域差分法求出木堆這種光子晶體結構的電磁波的穿透頻譜,進而驗證在紅外光波段這種結構有頻隙, 大部分的紅外光會被這種金屬反射,只有可見光能穿透, 而在頻隙邊界會有較大的吸收。 在金屬光柵方面,當電場垂直溝槽時會造成表面電漿效應而且在長波長部份會有極大的穿透率。 當電場平行溝槽則會有低頻頻隙,利用兩層光柵,設計成木堆結構,則可設計此種結構成色彩濾波器。 | zh_TW |
dc.description.abstract | The electromagnetic phenomena and applications of periodic metallic structure are studied with the finite difference time domain method.
Three dimensional tungsten woodpile structures has potential to luminesce efficiently. The transmission spectrums of the photonic crystals are obtained. The structures has band gap in the infrared region in which most electromagnetic wave in the infrared region is reflected and absorbed more in the band edge by tungsten. Only electromagnetic wave in visible region can pass through. Using silver as the gratings and electric field perpendicular to the grating grooves, there are surface plasmon phenomena and very high transmittance in long wavelength region. We will discuss the mechanism. When electric field is parallel to the grating grooves, there are low frequency band gaps. Using two gratings as woodpile structures, we can design the structures as color filter. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:54:58Z (GMT). No. of bitstreams: 1 ntu-94-R92941060-1.pdf: 1561034 bytes, checksum: a93689e6bc4d212e3b2ff43f574615f5 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 1 導論..........................................7
1.1 光子晶體簡介................................7 1.2 表面電漿簡介................................8 1.3 有限時域差分法 (FDTD)......................14 2 有限時域差分法 (FDTD) 21 2.1 分析金屬的有限時域差分法...................21 2.2 完美匹配吸收邊界條件 (PML).................23 2.3 模擬實例:二維光子晶體......................26 3 三維金屬光子晶體.............................30 3.1 三維金屬光子晶體模擬.......................30 3.2 單層模擬分析...............................32 4 奈米金屬光柵分析及色彩濾波器設計.............43 4.1 電場垂直方柱的奈米金屬光柵.................43 4.2 色彩濾波器設計.............................44 5 結論.........................................63 附錄.........................................64 參考文獻......................................70 | |
dc.language.iso | zh-TW | |
dc.title | 以有限時域差分法分析三維金屬光子晶體及表面電漿現象 | zh_TW |
dc.title | Finite-Difference Time-Domain Modeling of Three-Dimensional Metallic Photonic Crystals and Surface Plasmon Phenomena | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 毛明華,王子建 | |
dc.subject.keyword | 有限時域差分法,光子晶體,表面電漿,奈米金屬光柵,色彩濾波器, | zh_TW |
dc.subject.keyword | FDTD,photonic crystal,surface plasmon,nano metallic grating,color filter, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-28 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。