Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35471
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王根樹
dc.contributor.authorChing-Fang Wuen
dc.contributor.author吳青芳zh_TW
dc.date.accessioned2021-06-13T06:54:19Z-
dc.date.available2005-08-04
dc.date.copyright2005-08-04
dc.date.issued2005
dc.date.submitted2005-07-27
dc.identifier.citationAbdul Ghani I. Dalvi, Radwan Al-Rasheed and M.A. Javeed (2000). Haloacetic acids (HAAs) formation in desalination processes from disinfectants. Desalination 129, 261-271.
Adamantia A. Kampioti and Euripides G. Stephanou (2002). The impact of bromide on the formation of neutral and acidic disinfection by-products (DBPs) in Mediterranean chlorinated drinking water. Wat. Res. 36, 2596-2606.
Beltran, F. J., Gomez-Serrano, V. and Duran (1992), A Degradation kinetics of p-nitrophenol ozonation in water. Wat. Res. 26, 9
Chang E.E., Lin Y.P. and Chiang P.C. (2001). Effects of bromide on the formation of THMs and HAAs. Chemosphere. 43, 1029-1034.
Changha Lee and Jeyong Yoon (2004). Temperature dependence of hydroxyl radical formation in the hv/Fe3+H2O2 and Fe3+H2O2 systems. Chemosphere 56, 923-934.
Cuy L.L., Frank M.B. and Davud T.W. (1997). A one-year survey of halogenated disinfection by-products in the distribution system of treatment plants using three different disinfection processes. Chemosphere. 34(11), 2301-2317.
David B., Francoise A. and Pascale S. (1998). Analysis of haloacetic acids in water by a novel technique; simultaneous exteaction- derivatization. 32(9), 2798-2806.
David A.Ellis, Mark L. Hanson, Paul K. Sibley, Tazeen Shahid, Neil A. Fineberg, Keith R. Solomon, Derek C.G. Muir and Scott A. Mabury (2001). The fate and persistence of trifluoroacetic and chloroacetic acids in pond waters. Chemosphere 42, 309-318.
Eisenhauer, H. R. (1971). Dephnilization by ozonolysis. Wat. Res. 5, 467.
E.E. Chang, Y. P. Lin and P.C. Chiang (2001). Effects of bromide on the formation of THMs and HAAs. Chemosphere 43, 1029-1034.
Fenton, H.J.H. (1894) Oxidation of Tartaric Acid in Presence of Iron, Journal of Chemical Society, 65, 889-910.
G. Kleiser and F.H. Frimmel (2000). Removal of precursors for disinfection by-products (DBPs) - differences between ozone and OH-radical-induced oxidation. The Science of the Total Environment 256, 1-9.
Giang Le Truong, Joseph De Laat, Bernard Legube (2004). Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2. Water research 38, 2384-2394.
Glaze, W.H., Hang, J.W., and Chapin D.H. (1987) Ozone Sci. Eng. 9, 335-352
Hoigne, J. and Bader, H. (1979). Ozonation of water: Selectivity and rate of oxidation of solutes. Ozone Sci. Engrg. 1, 73-85.
Hossein P. and Alan A.S. (1995). Relationship between trihalomethanes and haloacetic acids with total organic halogen during chlorination. Wat. Res. 29(9), 2059-2062.
Jacangelo J.G., DeMarco J., Owen D.M. and Randtke S.J. (1995). Selected processes for removing NOM:and overview.J. AWWA. 1, 64-77
Jan Dojlido, Edward Zbieć and Ryszard Ŝwietlik (1999). Formation of the Haloacetic acids during ozonation and chlorination of water in Warsaw waterworks (Poland). Wat. Res. 33(14), 3111-3118.
Jeanine D. Plummer and James K. Edzwald (2001). Effect of ozone on algae as precursors for Trihalomethane and Haloacetic acid production. Environ. Sci. Technol. 35, 3661-3668.
Joshi, M.G. and Shambaugh, R. L. (1982). The kinetics of ozone-phenol reaction in aqueous solutions. Wat. Res. 16, 933.
Junsung Kim, Yong Chung, Dongchun Shin, Myungsoo Kim, Yonghun Lee, Youngwook Lim and Duckhee Lee (2002). Chlorination by-products in surface water treatment process. Desalination 151, 1-9.
Kang Y.W. and Hwang K.Y. (2000) Effects of reaction conditions on the oxidation efficiency in the Fenton process. Wat. Res. 34(10), 2786-2790
Kazuaki Ito, Wen Jian, Wataru Nishijima, Aloysius U. Baes, Eiji Shoto and Mitsumasa Okada (1998). Comparison of ozonation and AOPs combined with biodegradation for removal of THM precursors in treated sew age effluents. Wat. Sci. Tech. 38(7), 179-186.
Krasner S., McGuire M., Jacangelo J., Patania N., Reagan K. and Aieta E. (1989). The occurrence of disinfection by-products in US drinking water. Journal American Water Works Association. 81, 41-53.
Lewis A. Rossman, Richard A. Brown, Philip C. Singer and John R. Nuckols (2001). DBP formation kinetics in a simulated distribution system. Wat. Res. 35(14), 3483-3489.
Lin Liang and Philip C. Singer (2003). Factors influencing the formation and relative distribution of Haloacetic acids and Trihalomethanes in drinking water. Environ. Sci. Technol. 37, 2920-2928.
Lin S.H., Lin C.M., and Leu H.G. (1999). Operating characteristic and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Wat. Res. 33(7), 1735-1741
Lin S.H. and Lo C.C. (1997). Fenton Process for Treatment of Desizing Wastewater . Wat. Res., 31(8), 2045-2056
Lindsey M.E. and Tarr M.A. (2000). Inhibited hydroxyl radical degradation of aromatic hydrocarbons in the presence of dissolved fulvic acid. Wat. Res. 34(8), 2385-2389
Mehmet Kitis, James E. Kilduff and Tanju Karanfil (2001). Isolation of dissolved organic matter (DOM) from surface water s using reverse osmosis and its impact on the reactivity of DOM to formation and speciation of disinfection by-products. Wat. Res. 35(9), 2225-2234.
Michael L. Pomes, Cynthia K. Larive, E. Michael Turman, W. Reed Green, William H. Orem, Colleen E Rostad, Tyler B. Coplen, Benjamin J. Cutak and Ann M. Dixon (2000). Sources and Haloacetic acid/Trihalomethane formation potentials of aquatic humic substances in the Wakarusa River and Clinton Lake near Lawrence, Kansas. Environ. Sci. Technol. 34, 4278-4286.
Owen D.M.,Amy G.L., Chowdhury Z.K., Paode R., McCoy G. and Viscosil K.(1995). NOM characterization and treatability. J.AWWA. 1, 46-63
Rook, J.J. (1974). Formation of haloforms during chlorination of natural waters. Water Trme. Exam. 23, 234-243.
Rook, J.J. (1978). Possible pathways for the formation of chlorinated degradation products during chlorination of humic acids and resorcinol. Water Chlorination-Environmental Impact and Health Effects, 3.
Rujikawa et al. (1989). Ozonation in America; An Evolution of success. Water Engrg. Mgmt. 10, 2-24.
S.-H. Gau and F.-S. Chang. (1996). Improved Fenton method to remove recalcitrant organics in landfill leachate. Wat. Sci. Tech. 34, 7-8, 455-462.
Sheng H. Lin and Cho C. Lo. (1997). Fenton process for treatment of desizing wastewater. Water research 31(8), 2050-2056.
Shyh-Fang Kang, Chih-Hsaing Liao and Mon-Chun Chen (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere 46, 923-928.
Singer P. (1994). Control of disinfection by-products in drinking water. Journal of Environmental Engineering . 120(4), 727-744.
Staehelin, J. and Hoigne, J. (1982). Decomposition of ozone in water: Rate if initation by hydroxide ions and Hydrogen peroxide. Environ. Sci. Technol 16, 676.
Stevens A.A, Moore L.A and Miltner R.J. (1989). Formation and control of non-trihalomethane disinfection by-products. Journal American Water Works Association. 81(8), 54-60.
Suffet I.H. and Carthy P.M. (1989) Aquatic humic substances : American chemical society. Washin, D.C.
Yun Whan Kang and Kyung-yub Hwang (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water research 34(10), 2789-2790.
Yurteri, C. and Gurol, M. D. (1987). Removal of Dissolved Organic Contaminants by Ozonation. Environmental Progress 6, 240-245.
Yurteri, C. and Gurol, M. D. (1988). Ozone consumption in natural water: effects of background organic matter, pH and carbonate species. Ozone Sci. Engrg 10, 277-290.
蔣本基(2000),水源鹽化對加氯消毒副產物生成之影響與改善對策之研究,行政院環保署委託計畫,EPA-89-U1J1-03-003。
康世芳、許聖哲、楊振昇、陳孟春 (1999) Fenton程序氧化與混凝處理染整業生物出流水之研究,第二十四屆廢水處理技術研討會論文集,225-230。
張芳淑、高思懷、吳嘉麗 (1995) pH值在Fenton系統中所扮演的角色探討,第二十屆廢水處理技術研討會論文集,6-61-6-67。
白珊燕(2000),以臭氧氧化水中有機物之研究,台灣大學環境衛生所碩士論文。
曾元璟(2003),Fenton 程序處理水中有機物之研究,台灣大學環境衛生所碩士論文。
張慧嫺(2004),台灣地區飲用水中含鹵乙酸之分析與流佈調查,台灣大學環境衛生所碩士論文。
金門縣自來水廠(2004),金門地區高級淨水處理工程委託技術服務。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35471-
dc.description.abstract目前台灣地區淨水廠大多以添加氯氣或次氯酸鹽等含氯消毒劑之加氯消毒為主,但許多研究指出原水中的天然有機物會與水中氯反應產生消毒副產物(Disinfection By-Products,DBPs)。外島地區由於原水背景有機物濃度偏高,且受到海水入侵的影響,原水會含有較高濃度的溴離子,因此容易產生含溴的消毒副產物。一般傳統淨水處理流程無法去除水中有機物。由於氫氧自由基具有很強的氧化力,因此本研究利用兩種高級氧化法:Fenton程序(H2O2 / Fe2+)及臭氧氧化法,評估其去除外島地區原水中的有機物質之效能,並探討其減少消毒副產物生成的可能。實驗用水樣為人工配置之黃酸水溶液及採集金門二地區原水,以Fenton程序及臭氧氧化兩種不同方式對水樣進行處理,並觀察水中有機物質的降解情形;在消毒副產物的影響方面,則針對各高級氧化程序不同階段水樣進行消毒副產物生成潛能實驗,以分析水中三鹵甲烷與含鹵乙酸的變化。
實驗結果顯示不論是以Fenton程序或臭氧氧化進行反應,水體pH值的調控是必須注意的。在pH=3時,主要進行Fenton氧化反應,特色為反應快速,1分鐘內即可去除水中有機物40%~50%,消毒副產物的生成也同時有效受到控制;而當pH=4時,Fenton程序則能同時進行氧化與混凝的作用,可去除黃酸水溶液中約70%的有機物,對於金門地區原水中有機物也有60%的去除效果。而隨著水中有機物質的減少,消毒副產物的生成量也隨之降低。當利用臭氧進行氧化反應時,水中pH值會影響反應途徑,使得其對有機物的分解速率受到影響。反應條件在pH=10時進行,可使得臭氧氧化的速率較快,也可在短時間內降低水中消毒副產物的產生。而在利用臭氧進行氧化前,尚需先過濾掉水中大顆粒物質,以避免氧化過程中nonpurgeable dissolved organic carbon, NPDOC測值升高。同時反應時間也不宜過長,以免水中溴離子與臭氧反應,產生對人體健康危害的溴酸鹽。
整體來說,Fenton程序與臭氧氧化反應確實能有效去除消毒副產物的前質,但使用前必須先瞭解水體組成特性,控制適當pH值及反應時間,以增進其在原水處理上之成效。
zh_TW
dc.description.abstractIn Taiwan, chlorination is widely used as a disinfectant in water treatment process. However, many studies have shown that chlorination process results in the formation of Disinfection By-Products (DBPs), and Br-DBPs are formed in raw water containing bromide. In conventional water treatment process, the natural organic matter (NOM) removal is low, about 10% to 40 %. The objective of this study is to use Fenton process and ozonation to remove NOM in raw water and to evaluate their effectiveness to reduce DBPs formation potential.
  The results indicated that pH is an important factor in advanced oxidation process. In Fenton oxidation process, 40% ~ 50% NPDOC of the fulvic acid and Kinmen raw water is removed at pH=3. The Fenton process contains oxidation and coagulation mechanism at pH=4. For fulvic acid, about 70% of NPDOC is removed; for Kinmen raw water, about 60% NPDOC is removed. The DBPFP was reduced after AOPs due to the reduction of the organic precursor. Compared with Fenton process, the reaction mechian changes with pH in ozonation process. At pH 10, both the oxidation rate and final NPDOC removed ratio are better than that at pH 7. When the particulate organic matter were not removed form water before ozonation, the NPDOC is increased. And if reaction time is longer than 30min, BrO3- will be formed in water.
  In general, both Fenton process and ozonation can remove organic matter from water, and the effective is based on pH and reaction time. However, the reaction condition is different with different source water, and it is important to evaluate its suitability before AOP is adopted.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:54:19Z (GMT). No. of bitstreams: 1
ntu-94-R92844014-1.pdf: 587965 bytes, checksum: 92e221fa1075ccbac75ba61f3a5a9df3 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄
摘要……………………………………………………………………………I
Abstract………………………………………………………………………..II
目錄………………………………………………………………….………. III
圖目錄…………………………………………………………………...…….V
表目錄……………………………………………………………………...VI
附錄…………..………………………………………………………VII

第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 原水中之背景有機物 4
2-2 飲用水中之消毒副產物 6
2-2-1 消毒副產物的生成 6
2-2-2 影響水中消毒副產物產生量之因子 7
2-2-3 消毒副產物管制標準 8
2-2-4 消毒副產物之人體健康效應 9
2-3 金門水廠概況 10
2-3-1 金門水質現況 10
2-4 高級氧化技術 14
2-4-1 Fenton程序 14
2-4-1-1 Fenton反應機制 14
2-4-1-2 Fenton程序處理的優缺點 15
2-4-1-2 Fenton程序處理水中有機物之應用 16
2-4-2 臭氧處理程序 17
2-4-2-1 臭氧的特性 17
2-4-2-2 臭氧氧化機制 18
2-4-2-3 臭氧於飲用水上的應用 18
第三章 材料與方法 20
3-1 實驗藥品 20
3-2 儀器設備 23
3-3 實驗水樣 28
3-3-1 黃酸 28
3-3-2 金門原水 29
3-4 實驗過程與分析 30
3-4-1 研究架構 30
3-4-2 實驗步驟 31
3-4-3 分析方法 33
第四章 結果與討論 35
4-1 Fenton程序 35
4-1-1 Fenton氧化 35
4-1-2 Fenton 混凝 37
4-1-3 消毒副產物生成潛能比較 39
4-2 臭氧氧化反應 48
4-2-1 不同水樣之臭氧氧化結果 50
4-2-2 消毒副產物生成潛能比較 51
第五章 結論與建議 59
5-1 Fenton程序 59
5-2 臭氧氧化 59
第六章 參考文獻 61

圖目錄
圖2-1 天然水體中有機碳之組成……………………………………………..5
圖2-2 水中腐植質產生三鹵甲烷與鹵乙酸的機制........................................6
圖3-1 臭氧反應裝置………………………………………………………..32
圖4-1 Fenton氧化反應不同時間後之NPDOC變化..................................36
圖4-2 不同水樣經Fenton/Fe3+混凝後之NPDOC變化…………………. 38
圖4-3 不同水樣經Fenton氧化/混凝後之NPDOC變化…………………38
圖4-4 黃酸溶液經Fenton氧化後之三鹵甲烷生成潛能………………….40
圖4-5 FA經Fenton混凝與三價鐵混凝後之三鹵甲烷生成潛能…………40
圖4-6 榮湖原水經Fenton氧化後之三鹵甲烷生成潛能………………….42
圖4-7 太湖原水經Fenton氧化後之三鹵甲烷生成潛能………………….42
圖4-8 榮湖原水經Fenton混凝與三價鐵混凝後之三鹵甲烷生成潛能…43
圖4-9 太湖原水經Fenton混凝與三價鐵混凝後之三鹵甲烷生成潛能….43
圖4-10 FA經Fenton氧化後之鹵乙酸生成潛能………………………….45
圖4-11 黃酸經Fenton混凝與三價鐵混凝後之鹵乙酸生成潛能………...45
圖4-12 榮湖原水經Fenton氧化後之鹵乙酸生成潛能…………………...46
圖4-13 太湖原水經Fenton氧化後之鹵乙酸生成潛能…………………...46
圖4-14 榮湖經Fenton混凝與三價鐵混凝後之鹵乙酸生成潛能………...47
圖4-15 太湖原水經Fenton混凝與三價鐵混凝後之鹵乙酸生成潛能…...47
圖4-16 不同濃度臭氧氧化黃酸及過濾後太湖原水(1μm)NPDOC變化…49
圖4-17 以臭氧氧化過濾前後黃酸及太湖原水NPDOC之變化…………..49
圖4-18 黃酸經臭氧氧化後之三鹵甲烷生成潛能…………………………52
圖4-19 太湖原水經臭氧氧化後之三鹵甲烷生成潛能……………………53
圖4-20 臭氧氧化過濾後(1μm)太湖原水之三鹵甲烷生成潛能……........53
圖4-21 黃酸經臭氧氧化後之鹵乙酸生成潛能……………………………54
圖4-22 太湖原水(未過濾)經臭氧氧化後之鹵乙酸生成潛能…………….55
圖4-23 臭氧氧化過濾後太湖原水(1μm)之鹵乙酸生成潛能……………56
圖4-24 太湖原水經臭氧氧化後溴離子與溴酸鹽濃度之變化………..…..58
圖4-25 過濾之太湖原水(1μm)臭氧氧化後溴離子與溴酸鹽濃度變化…59
表目錄
表2-1 金門地區水庫供水區域相關資料......................................................10
表2-2 民國92年9月到民國93年5月金門二地區清水TTHM、HAAs分析
結果之平均值................................................................................. ....11
表2-3 榮湖測站水質監測值..................................... .................................. .12
表2-4 太湖測站水質監測........................... ..................................................13
表2-5 Fenton程序處理水中有機物相關文獻.................................16
表2-6 臭氧性質….………………………………………….. …………..17
表2-7 臭氧於淨水廠使用之主要目的……………..………… ..………….19
表3-1 三鹵甲烷之Target ion……………………………………………….26
表3-2 EQUITY-5 COLUMN SIM MODE 設定………..………………..27
表3-3 金門二地區原水基本性質…………………………………………..29
附錄
附錄1 各三鹵甲烷檢量線……..…... ……... ……... ……...........................69
附錄2 各鹵乙酸檢量線…... ……... ……... …….........................................70
附錄3 Fenton氧化處理各實驗水樣之三鹵甲烷生成潛能結果.. …..........73
附錄4 Fenton混凝/Fe3+混凝處理各實驗水樣之三鹵甲烷生成潛能結果74
附錄5 Fenton氧化處理各實驗水樣之鹵乙酸崩成潛能結果.…................75
附錄6 Fenton混凝與Fe3+混凝處理黃酸、榮湖原水、太湖原水之鹵乙酸生成潛能結果…... ……... ……........................................................76
附錄7 臭氧處理黃酸、太湖原水之三鹵甲烷生成潛能結果.....................77
附錄8 臭氧氧化處理黃酸、太湖原水之鹵乙酸生成潛能結果.................78
dc.language.isozh-TW
dc.title氫氧自由基處理水中消毒副產物前質之研究zh_TW
dc.titleRemoval of Disinfection By-products Precursors in Water with Hydroxyl Free Radicalen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳忠信(Chung-Hsin Wu),林嘉明
dc.subject.keyword氫氧自由基,消毒副產物,臭氧,zh_TW
dc.subject.keywordHydroxyl Free Radical,DBP,Ozonation,Fenton,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
574.18 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved