請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35469
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳漢忠 | |
dc.contributor.author | Pi-Chun Li | en |
dc.contributor.author | 李璧君 | zh_TW |
dc.date.accessioned | 2021-06-13T06:54:13Z | - |
dc.date.available | 2008-08-04 | |
dc.date.copyright | 2005-08-04 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-27 | |
dc.identifier.citation | Aaskov, J. G., Geysen, H. M., and Mason, T. J. (1989). Serologically defined linear epitopes in the envelope protein of dengue 2 (Jamaica strain 1409). Arch. Virol. 105, 209-221.
Allison, S. L., Schalich, J., Staisny, K., Mandl, C. W., and Heinz, F. X. (2001). Mutational evidence for an internal fusion peptide in the flavivirus envelope protein. J. Virol. 75, 4268-4275. Appel, J. R., Pinilla, C., Niman, H., and Houghten, R. (1990). Elucidation of discontinuous linear determinants in peptides. J. Immunol. 144, 976-983. Anuradha, S., Singh, N. P., and Rizvi S. N. (1998). The 1996 outbreak of dengue hemorrhagic fever in Delhi, India. Southeast Asian J. Trop. Med. Public Health 29, 503-506. Arias, C. F., Preugschat, F., and Strauss, J. H. (1993).Virology 193, 888–899. Barlow, D. J., Edwards, M. S., and Thornton, J. M. (1986). Continuous and discontinuous protein antigenic determinants. Nature 322, 747-748. Bowditch, R. D., Tani, P., and McMillan R. (1996). Characterization of autoantigenic epitopes on platelet glycoprotein IIb/IIIa using random peptide libraries. Blood 88, 4579-4584. Bhamarapravati, N., and Yoksan, S. (2000). Live attenuated tetravalent dengue vaccine. Vaccine 18 Suppl. 2, 44-47. Branch, S. L., and Levett, P .N. (1999). Evaluation of four methods for detection of immunoglobulin M antibodies to dengue virus. Clin. Diagn. Lab. Immunol. 6, 555-557. Brandt, W. E., McCown, J. M., Gentry, M. K., and Russell, P. K. (1982). Infection enhancement of dengue type 2 virus in the U-937 human monocyte cell line by antibodies to flavivirus cross-reactive determinants. Infect. Immun. 36, 1036-1041. Cason, J. (1994). Strategies for mapping and imitating viral B-cell epitopes. J. Virol. Methods 49, 209-220. Chambers, T. J., Grakoui, A., and Rice, C. M. (1991). J. Virol. 65, 6042-6050. Clum, S., Ebner, K. E., and Padmanabhan, R. (1997) J. Biol. Chem. 272, 30715-30723. Cortese, I., Tafi, R., and Grimaldi L. M. E. et al. (1996). Identification of peptides specific for cerebrospinal fluid antibodies in multiple sclerosis by using phage libraries. Proc. Natl. Acad. Sci. USA. 93, 11063-11067. Crill, W. D., and Roehrig, J. T. (2001). Monoclonal antibodies that bind to domain III of DEN virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J. Virol. 75, 7769-7773. De Paula, S.O., Pires Neto, R.J., Correa, and J.A. et al. (2002). The use of reverse transcription-polymerase chain reaction (RT-PCR) for the rapid detection and identification of dengue virus in an endemic region: a validation study. Trans. R. Soc. Trop. Med. Hyg. 96, 266-269. Dybwad, A., Forre., O., Kjeldsen-Kragh, J., Natvig, J. B., and Sioud, M. (1993). Identification of new B cell epitopes in the sera of rheumatoid arthritis patients using a random nanopeptide phage library. Eur. J. Immunol. 23, 3189-3193. Falgout, B., Miller, R. H., and Lai, C.-J. (1993). J. Virol. 67, 2034-2042. Folgori, A., Tafi, R., and Meola, A. et al. (1994). A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO J. 13, 2236-2243. Gevorkian, G., Manoutcharian, K., Almagro, J. C, Govezensky, T., and Dominguez, V. (1998). Identification of autoimmune thrombocytopenic purpura-related epitopes using phage-display peptide library. Clin. Immunol. Immunopathol. 86, 305-309. Greenwood, J., Willis, A. E., and Perham, R. N. (1991). Multiple display of foreign peptides on a filamentous bacteriophage. J. Mol. Biol. 220, 821-827. Gubler, D. J. (1998). Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11, 480-496. Gubler, D. J. (2002). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 10, 100-103. Gubler, D. J., and Clark, G. G., (1995). Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg. Infect. Dis. 1, 55-57. Gubler, D. J., and Kuno, G. (1997). Dengue and dengue haemorrhagic fever: its history and resurgence as a global public health problem, in Dengue and Dengue Hemorrhagic Fever. CAB International, London, 1-22. Guirakhoo, F. et al. (2001). Construction, safety and immunogenicity in nonhuman primates of a chimeric yellow fever–dengue virus tetravalent vaccine. J. Virol. 75, 7290-7304. Guzman, M. G., Alvarez, M., and Rodriguez, R. et al. (1997). Fatal dengue hemorrhagic fever in Cuba. Int. J. Infect. Dis. 3, 130-135. Guzman, M. G. and Kouri, G.. (1996). Advances in dengue diagnosis. Clin. Diagn. Lab. Immunol. 3, 621-627. Guzman, M. G., and Kouri, G. (2002). Dengue: an update. Lancet. Infect. Dis. 2, 33-42. Guzman, M. G., Kouri, G.. (2002). Dengue: an update. Lancet Infect Dis 2, 33-42. Guzman Tirado, M. G., Kouri Flores, G., and Bravo Gonzalez, J. R. (1999). Emergence of dengue hemorrhagic fever in the Americas. Reemergence of dengue. Rev. Cubana. Med. Trop. 51, 5-13. Halstead, S. (1993). WHO Regional Publication, SEARO 22, 80-103. Halstead, S. B. (1980). Immunological parameters of togavirus disease syndromes. In The togaviruses. biology, structure, replication. R.W. Schlesinger, editor. Academic Press New York, New York, USA. 107-173. Halstead, S. B. (1988). Pathogenesis of dengue: challenges to molecular biology. Science 239, 476-481. Halstead, S. B., Rojanasuphot, S., and Sangkawibha, N. (1983). Original antigenic sin in dengue. Am. J. Trop. Med. Hyg. 32, 154-156. Halstead, S.B., (1999). Is there an inapparent dengue explosion? Lancet 353, 1100-1101. Halstead, S. B., Venkateshan, C. N., Gentry, M. K., and Larsen, L. K. (1984). Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J. Immunol. 132, 1529-1532. Halstead, S. B., and O'Rourke, E. J. (1977). Dengue viruses and mononuclear phagocytes infection enhancement by non-neutralizing antibody. J. Exp. Med. 146, 201-217. Henchal, E. A., McCown, J. M., and Seguin, M. C. et al. (1983). Rapid identification of dengue virus isolates by using monoclonal antibodies in an indirect immunofluorescence assay. Am. J. Trop. Med .Hyg. 32:164-169. Henchal, E. A., and Putnak, J. R. (1990). The dengue viruses. Clin. Microbiol. Rev. 3, 376-396. Hongsiriwon, S. (2002). Dengue hemorrhagic fever in infants. Southeast Asian J. Trop. Med. Public Health 33, 49-55. Innis, B. L., Thirawuth, V., and Hemachudha, C. (1989). Identification of continuous epitopes of the envelope glycoprotein of dengue type 2 virus. Am. J. Trop. Med. Hyg. 40, 676-687. Kabra, S. K., Jain, Y., and Pandey, R. M. et al. (1999). Dengue haemorrhagic fever in children in the 1996 Delhi epidemic. Trans. R. Soc.Trop. Med. Hyg. 93, 294-298. Kalayanarooj, S. et al. (1997). Early clinical and laboratory indicators of acute dengue illness. J. Infect. Dis. 176, 313-321. Kaufman, B. M., Summers, P. L., Dubois, D. R., and Eckels, K. H. (1987). Monoclonal antibodies against dengue 2 virus E-glycoprotein protect mice against lethal dengue infection. Am. J. Trop. Med. Hyg. 36, 427-434. King, C. C., Wu, Y. C., Chao, D. Y., et al. (2002). Major epidemics of dengue in Taiwan in 1981–2000: related to intensive virus activities in Asia. Dengue Bulletin 24, 1- 10. Kroeger, A., Nathan, M., and Hombach, J. (2004). Dengue. Nat. Rev. 2, 360-361. Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R., Strauss, E. G., Baker, T. S., and Strauss, J. H. (2002). Structure of DEN virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717-725. Kuno, G., Gubler, D. J., and Santiago de Weil, N. S. (1985). Antigen capture ELISA for the identification of dengue viruses. J. Virol. Methods 12, 93-103. Laver, W. G., Air, G. M., Webster, R. G., and Smith-Gill, S. J. (1990). Epitopes on protein antigens: misconceptions and realities. Cell 61, 553-555. Libraty, D. H., Pichyangkul, S., Ajariyakhajorn, C., Endy, T. P., and Ennis, F. A. (2001). Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis. J. Virol. 75, 3501-3508. Littaua, R., Kurane, I., and Ennis, F. A. (1990). Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J. Immunol. 144, 3183-3186.Liu, I. J., Hsueh, P. R., Lin,C. T., Chiu, C. Y., Kao, C. L., Liao, M. Y., and Wu, H. C. (2004). Disease-specific B cell epitopes for serum antibodies from patients with Severe Acute Respiratory Syndrome (SARS) and serologic detection of SARS antibodies by epitope-based peptide antigens. J. Infe. Dis. 190, 797-809. Mackenzie, J. S., Gubler, D. J., and Petersen, L. R. (2004). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat.Med. 10, s98-s109. Mairuhu, A. T. A., Wagenaar, J., Brandjes, D. P. M., and van Gorp, E. C. M. (2004). Dengue: an arthropod-borne disease of global importance. Europ. J. Clin. Microbiol. & Infect. Dis. 23, 425-433. Mandl, C. W., Guirakhoo, F., Holzmann, H., Heinz, F. X., and Kunz, C. (1989). Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J. Virol. 63, 564-571. Manoutcharian, K., Sotelo, J., Garcia, E., Cano, A., and Gevorkian, G. (2004). Character Disease- Specific B Cell Epitopes of SARS. J.I.D. 190, 809. Megret, F., Hugnot, J. P., Falconar, A. M., Gentry, K., Morens, D. M., Murray, J. M. Schlesinger, J. J., Wright, P. J., Young, P., Van Regenmortel, M. H., and Deubel, V. (1992). Use of recombinant fusion proteins and monoclonal antibodies to define linear and discontinuous antigenic sites on the denguevirus envelope glycoprotein. Virology 187, 480-491. Messer, W. B., Gubler, D. J., Harris, E., et al. (2003). Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg. Infect. Dis. 9, 800-809. Modis, Y., Ogata, S., Clements, D., and Harrison, S. C. (2003). A ligand-binding pocket in the DEN virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA 100, 6986-6991. Modis, Y., Ogata, S., Clements, D., and Harrison, S. C. (2004). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313-319. Morens, D. M., and Halstead, S. B., (1990). Measurement of antibody-dependent infection enhancement of four dengue virus serotypes by monoclonal and polyclonal antibodies. J. Gen. Virol. 71, 2909-2914. Mongkolsapaya, J., Dejnirattisai, W., Xu, X. N., Vasanawathana, S., Tangthawornchaikul, N., Chairunsri, A., Sawasdivorn, S., Duangchinda, T., Dong, T., Rowland-Jones, S., Yenchitsomanus, P. T., McMichael, A., Malasit, P., and Screaton, G.. (2003). Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9, 921-927. Morens, D. M., Halstead, S. B. and Marchette. N. J. (1987). Profiles of antibody-dependent enhancement of dengue virus type 2 infection. Microb. Pathog. 3, 231-237. Nawa, M., Ichikawa, Y., and Inouye, S. (1985). Serotyping of dengue viruses by an enzyme-linked immunosorbent assay. Jpn. J. Med. Sci. Biol. 38, 217-221. Nimmannitya, S . (2002). Dengue haemorrhagic fever: current issues and future research. Asian-Oceanian Journal of Paediatrics and Child Health 1, 1- 21. Perikov, Y. (2000). Development of dengue vaccine. Dengue Bulletin 24, 71-76. Pinheiro, F. P., and Corber, S. J. (1997). Global situation of dengue and dengue haemorrhagic fever, and its emergence in the Americas. World Health Stat. Q. 50, 161-169. Prezzi, C., Nuzzo, M., and Meola, A., et al. (1996). Selection of antigenic and immunogenic mimics of hepatitis C virus using sera from patients. J Immunol.156, 4504-4513. Qiu, F. X., Gubler, D. J., and Liu, J. C., et al. Dengue in China: a clinical review. (1993). Bull World Health Organ 71, 349-539. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, K., and Harrison, S. C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2Å resolution. Nature 375, 291-298. Rico-Hesse, R. (2003). Microevolution and virulence of dengue viruses. Adv. Virus Res. 59,315-341. Roehrig, J. T., Bolin, R. A., and Kelly, R. G. (1998). Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology 246, 317-328. Roehrig, J. T., Johnson, A. J., Hunt, A. R., Bolin, R. A., and Chu, M. C. (1990). Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology 177, 668-675. Rothman, A. L. (2004). Dengue: defining protective versus pathologic immunity. J. Clin. Invest. 113, 946-951. Sela, M. (1969). Antigenicity: some molecular aspects. Science 166, 1365-1374. Simmons, M., Murphy, G. S., and Kochel, T., et al. (2001). Characterization of antibody responses to combinations of a dengue-2 DNA and dengue-2 recombinant subunit vaccine. Am. J. Trop. Med. Hyg. 65, 420-426. Sun, W. et al. (2003). Vaccination of human volunteers with monovalent and tetravalent live-attenuated dengue vaccine candidates. Am. J. Trop. Med. Hyg. 69, Suppl. 6, 24-31. Thavara, U., Tawatsin, A., and Chansang, C., et al. (2001). Larval occurrence, oviposition behavior and biting activity of potential mosquito vectors of dengue on Samui Island, Thailand. J. Vector Ecol. 26, 172-180. Trirawatanapong, T., Chandran, B., Putnak, R., and Padmanabhan, R. (1992). Mapping of a region of dengue virus type-2 glycoprotein required for binding by a neutralizing monoclonal antibody. Gene 116, 139-150. Vaughn, D. W., et al. (2000). J. Infect. Dis. 181, 2-9. Velathanthiri, N., Fernando, R., and Fernando, S., et al. (2002). Development of a polymerase chain reaction (PCR) for the detection of dengue virus and its sero types. Abstract presented at the Sri Lanka College of Microbiologists annual sessions. Willis, A. E., Perham, R. N., and Wraith, D. (1993) Immunological properties of foreign peptides in multiple display on a filamentous bacteriophage. Gene 128, 79-83. World Health Organization. Dengue fever in Indonesia. Available at http://www.who.int/csr/don/2004 02 26a/en; Internet; accessed October 12, 2004. World Health Organisation. Prevention and control of dengue and dengue haemorrhagic fever: comprehensive guidelines. WHO Regional publication, SEARO, No 291999. Wu, H. C., Huang, Y. L., and Chao, T. T., et al. (2001) Identification of B-cell epitope of dengue virus type 1 and its application in diagnosis of patients. J. Clin. Microbiol. 39, 977-982. Wu, H. C., Jung, M. Y., Chiu, C. Y., Lai, S. C., Jan, J. T., and Shaio, M. F. (2003). Identification of a dengue virus type 2 (DEN-2) serotype-specific B-cell epitope and detection of DEN-2–immunized animal serum samples using an epitope-based peptide antigen. J. Gen. Virol. 84, 2271-2279. Wu, H. C., Yeh, C. T., Huang, Y. L., Tarn, L. J., and Lung, C. C. (2000). Characterization of neutralizing antibodies and identification of neutralizing epitope mimics on the Clostridium botulinum neurotoxin type A. Appl. Environ. Microbiol. 67, 3201-3207. Wu, S. J., et al. (2000). Human skin Langerhans cells are targets of dengue virus infection. Nat. Med. 6, 816-820. Young, P. R., Hilditch, P. A., and Bletchly, C., et al. (2000). An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients. J. Clin. Microbiol. 38, 1053-1057. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35469 | - |
dc.description.abstract | 登革熱是經由病媒蚊感染人類的重要疾病,在熱帶及亞熱帶地區登革是一個持續擴張的嚴重公衛問題。根據世界衛生組織2000年的估計,全球每年約有五千萬到一億的人口飽受登革病毒的感染,而登革出血熱則高達五十萬病例,即便如此到目前為止尚無任何安全有效的疫苗可以預防此疾病。
辨識病毒蛋白的抗原決定位有助於疾病治療及致病機轉的瞭解,為了研究登革病人血清之B細胞抗原決定位,我們運用噬菌體隨機顯現的胜肽庫對感染登革第二型和第四型的病人血清進行篩選的工作。呈陽性反應的噬菌體株與登革病人血清具專一性結合能力,並且不與正常人的血清結合。將這些經篩選的噬菌體株定序之後,其胺基酸序列可分成三組:第一組的序列主要與登革出血熱病人的血清具較高度的結合力;第二組的胺基酸序列則與登革熱病人的血清具較高度結合力;第三組為對登革熱及登革出血熱病人的血清均具有結合反應。這幾組具相似性的胺基酸序列可分別對應到登革病毒的殼鞘蛋白 (capsid protein)、套膜蛋白 (E protein) 和非結構性蛋白 (nonstructure protein) 的基因序列。其中DP1-1-54噬菌體株與登革出血熱病人的血清具有較高度的相關性,其胺基酸序列可對應到登革病毒的套膜蛋白;DP3-25噬菌體株與登革熱病人的血清具較高的相關性;DP1-2-10及DP2-2-7分別與登革出血熱及登革熱病人血清均具有結合反應,其中DP1-2-10與DP3-25經比對後並未明顯與登革病毒具相同胺基酸序列,而DP2-2-7則對應到病毒的殼鞘蛋白。 我們也將噬菌體顯現的序列製作成融合蛋白來進行相關的實驗。呈陽性反應的噬菌體株及含抗原決定位的重組融合蛋白可以和登革病人的血清反應,證實具有臨床診斷的潛力。藉由抗原決定位所發展的血清學檢測可以運用於實驗室的快速偵檢。此外經由分子層面研究登革B細胞抗原決定位有助於探索病毒和抗體之間的反應,並且對登革出血熱致病機轉的研究有極重要意義。 | zh_TW |
dc.description.abstract | Dengue is an expanding public health problem in the tropics and subtropical area and it’s the most important arboviral disease of humans. An estimated 50-100 million dengue infections and 500,000 DHF cases occur annually (World Health Organisation, 2000), and its effective vaccine still remains elusive.
Recognition of viral protein epitopes is required for the development of useful therapies and understanding the pathogenesis of the disease. To investigate disease-specific B-cell epitopes, human serum antibodies from DEN-2 and DEN-4 infected patients were biopanning with phage-displayed random peptide libraries. Immunopositive phage clones were proved to bind specifically to serum samples of dengue patients but not to normal human serum samples. The binding reactivity of the selected phage clones was divided into three different groups. Some epitopes had higher reactivity to DHF serum samples and the other had greater preference to DF. The third group of the selected phage clones recognized both DHF and DF serum samples. These phage-borne peptides had consensus motifs, which corresponded to amino acid sequences of dengue virus, included capsid (C), envelope (E) and nonstructural (NS) proteins. One of these phage clones, DP1-1-54, had higher reactivity to DHF serum samples which corresponded to amino acid sequences of dengue virus E protein; DP3-25 had greater preference to DF; DP1-2-10, DP2-2-7, recognized both DHF and DF. DP1-2-10 and DP3-25 had no corresponded to amino acid sequences reported for dengue virus. DP2-2-7 had corresponded to C protein. To apply phage-displayed epitopes for diagnosis of dengue patients, a recombinant GST-epitope-fusion protein was produced. Immunopositive phage clones and recombinant GST-epitope-fusion protein demonstrated clinical diagnostic potential by reacting with serum from patients with dengue. Our epitope-based serologic test may be useful in laboratory detection of dengue infection. Furthermore, identification of dengue specific epitopes is important in studying the virus-antibody interactions at a molecular level and address the role of antibodies in the pathogenesis of DHF. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:54:13Z (GMT). No. of bitstreams: 1 ntu-94-R92450011-1.pdf: 465796 bytes, checksum: a5734f57dd9e9c9cfdbdad90c725a9ea (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | Abbreviation……………………………III
中文摘要……………………………………1 Abstract……………………………………2 Introduction………………………………4 Materials and Methods…………………17 Results……………………………………23 Discussion………………………………30 Figures……………………………………36 Reference…………………………………57 | |
dc.language.iso | en | |
dc.title | 研究登革病人血清抗體之B細胞抗原決定位 | zh_TW |
dc.title | Identification of Disease-Specific B-Cell Epitopes for Antibodies from Dengue-Infected Human Serum Samples | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林欽塘,金傳春,高全良 | |
dc.subject.keyword | 登革,B細胞抗原決定位,登革出血熱,套膜蛋白, | zh_TW |
dc.subject.keyword | dengue,B cell epitope,DHF,E protein, | en |
dc.relation.page | 66 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-28 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
顯示於系所單位: | 口腔生物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 454.88 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。