請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35436
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 關秉宗 | |
dc.contributor.author | "Hsueh, Yu-Hsin" | en |
dc.contributor.author | 薛郁欣 | zh_TW |
dc.date.accessioned | 2021-06-13T06:52:44Z | - |
dc.date.available | 2005-08-01 | |
dc.date.copyright | 2005-08-01 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-28 | |
dc.identifier.citation | 參考文獻
王忠魁。1974。臺灣高山草原之由來及其演進與亞極群落之商榷。生物與環境。pp.1-16。中央研究院。 王 薇。2004。利用土壤有機質中 13^C 值探討勝光地區植群之改變。國立台灣大學森林學研究所碩士論文。 周昌弘。1999。臺灣芒屬植物生態與演化。科學發展月刊 27(10):1158-1169。 胡弘道。1993。森林土壤學。國立編譯館。臺灣、臺北市。 柳 榗。1963。小雲山高山草原生態之研究。林業試驗所報告 92號。 楊美玲。1997。塔塔加地區森林火災對松類造林地之植群,微氣候及土壤性質的影響。國立臺灣大學森林研究所碩士論文。 劉棠瑞、蘇 傑。1983。森林植物生態學。臺灣商務印書館。臺灣、臺北。 劉棠瑞、蘇 傑。1978。大甲溪上游台灣二葉松天然林之群落組成及相關環境因子之研究。台大實驗林研究報告 121:207–239。 劉逸斌。1991。八通關地區草生地之植群變動與火災適存植群之研究。國立臺灣大學植物學研究所碩士論文。 魏聰輝。2002。塔塔加 山生態系表層土壤熱收支特性之研究。國立台灣大學森林所博士論文。 鍾年均。1997。全球變遷:塔塔加高山生態系長期生態研究﹣塔塔加高山植群之研究(ㄧ)。 行政院國家科學委員會。臺灣、臺北市。 Abelson, H. and T. C. Hoering. 1961. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc. Natl. Acad. Sci. USA 47: 623-632. Alexandre, A., J-D. Meunier, A. Mariotti, and F. Soubies. 1999. Late Holocene phytolith and carbon-isotope record from a Latosol at Salitre, South-Central Brazil. Quaternary Research 51:187-194. Almendros, G., J. Dorado, F. J. González-Vila, and F. Martin. 1997. Pyrolysis of carbohydrate-derived macromolecules: its potential in monitoring the carbohydrate signature of geopolymers. J. Anal. Appl. Pyrolysis 40/41: 599-610. Almendros, G., J. Dorado, F. J. González-Vila, M. J. Blanco, and U. Lankes. 2000. 13C NMR assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biol. Biochem. 32: 793-804. Almendros, G., H. Knicker, and F. J. González-Vila. 2003. Rearrangement of carbon and nitrogen forms in peat after progressive isothermal heating as determined by soildstate 13C- and 15N- NMR spectroscopies. Org. Geochem. 34: 1559- 1568. Amundson, R. G., O.A. Chadwick, J. M. Sowers, and H. E. Doner. 1988. Relationship between climate and vegetation and the stable carbon isotope chemistry of soils inthe eastern Mojave desert, Nevada. Quaternary Research 29: 245-254. Archer, S. 1995. Tree-grass dynamics in a prosopis-thornscrub savanna parkland - reconstructing the past and predicting the future. Ecoscience 2:83-99. Aubréville, A. 1962. Savanisation tropicale et glaciations quaternaires. Adansonia 2(1):16- 84. Bailey, J.D. and Covington, W.W. 2002. Evaluating ponderosa pine regeneration rates following ecological restoration treatments in northern Arizona, USA. For. Ecol. Manag. 155(1-3):271-278. Baldock, J. A. and R. J. Smernik. 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org. Geochem. 33: 1093-1109. Balesdent, J., A. Mariotti, and B. Guillet. 1987. Natural C-13 aboundance as a tracer for studies of soil organic-matter dynamics. Soil Biology and Biochemistry 19: 25-30. Bames, P. W., L. L. Tieszen, and D. J. Ode. 1983. Distribution, production, and diversity of C3 and C4 dominated communities in a mixed prairie. Can. J. Bot. 61: 741-751. Bekele, A. 2001. Spatial variability and isotope studies of the prairie – forest transition soil in Louisiana. Dissertation of Agronomy Dept., Louisiana State University. Bender, M. M. 1968. Mass spectrometric studies of carbon-13 variations in corn and other grasses. Radiocarbon 10: 468-472. Bhagwat, A. S. 1997. Photosynthetic carbon assimilation of C3, C4, and CAM pathways. In: M. Pessarakli (ed.) Handbook of photosynthesis. Marcel Dekker Inc., New York. pp. 461-480. Bird, M. I. and J. A. Cali. 1998. A million-year record of fire in sub-Saharan Africa. Nature 394: 767-769. Bird, M. I., C. Moyo, J. L. Veenendaal, and P. Frost. 1999. Stability of elemental carbon in savanna soil. Global Biocheochemical Cycles 15: 923-932. Bird, M. and D. R. Gröcke. 1997. Determination of the aboundance and carbon isotope comsition of elemental carbon in sediments, Geochim. Cosmochim. Acta. 61: 3413- 3423. Bird, M. I., E. Veenendaal, C. Moyo, J. Lioyd, and P. Frost. 2000. Stability of elemental carbon in a savanna soil. Global Biogeochem. Cycles, 13: 933-950. Boutton, T. W. 1991. Stable carbon isotope ratios of natural meterials: II atmospheric, terrestrial, marine, and freshwater environments. In: Cloeman, D. C. and Fry, B. (eds.) Carbon Isotope Techniques. Academic Press, New York. pp. 173-185. Boutton, T. W. 1996. Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. In: T. W. Boutton and S. Yamasaki (eds.) Mass spectrometry of soils. Marcel Dekker Inc., New York. pp. 47-86. Boutton, T. W., S.R. Archer, A. J. Midwood, S. F. Zitzer, and R. Bol. 1998, !13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82: 5–41. Boutton, T. W., S. R. Archer, and A. J. Midwood. 1999. Stable isotopes in ecosystem science: structure, function and dynamics of a subtropical savanna. Rapid Commun. in Mass Spectrom. 13:1263-1277. Chiang, P. N., M. K. Wang, C. Y. Chiu, H. B. King, and J. L. Hwong. 2004. Changes in the grassland-forest boundary at Ta-Ta-Chia long term ecological research (LTER) site detected by stable isotope ratios of soil organic matter. Chemosphere 54:217-224. Chapman, H. H. 1932. Is the longleaf type a climax? Ecology 13:328-334. Clark, J. S. 1988a. Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quat. Res. 30: 67-80. Clark, J. S. 1988b. Stratigraphic charcoal analysis on petrographic thin sections: Application to fire history in northwestern Minnesota. Quat. Res. 30: 81-90. Clark, J. S. and P. D. Royall. 1995. Particle-size evidance for souce areas of charcoal accumulation in late Holocene sediments of estern North American lakes. Quat. Res. 43: 80-89. Clark, J. S., H. Cachier, J. G. Goldhammer, and B. Stocks (eds.) 1997. Sediment records of biomass burning and global change, NATO ASI series. Ser I, Global Environmental Change, no. 51. Berlin: Springer-Verlag. pp. 489. Cohen, M. S. and P. D. Gabriele. 1982. Degradation of coal by the fungi Polyporus versicolor and Poria monticola. Appl. Environ. Microbiol. 44(1): 23-27. Collatz, G. J., J. A. Berry, and J. S. Clark. 1998. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: Present, past, and future. Oecologia 114: 441-454. Cooper, C. F. 1961. The ecology of fire. Sci. Am. 204(4):150-160. Cope, M. J. and W. G. Chaloner. 1980. Fossil charcoal as evidence if past atmospheric composition. Nature 283: 647-649. Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta. 3: 53-92. Craig, H. 1957. Isotope standards for carbon and oxygen and correction factors for massspectrometric analysis of carbon dioxide. Geochem. Cosmochim. Acta. 12:133-149. Crutzen, P. J. and M. O. Andreae. 1990. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycle. Science 250: 1669-1678. Crutzen, P. J. and J. G. Goldammer. 1993. Fire in the environment: The ecological, atmospheric, and climatic importance of vegetation fires. In: Dahlm Workshop Reports Environmental Sciences Research Report. John Wiley, New York. pp. 415. Dennis, L. W., G. E. Maciel, P. G. Hatcher, and B. R. T. Simoneit. 1982. 13C Nuclear magnetic resonance studies of kerogen from Cretaceous black shales thermally altered by basaltic intrusions and laboratory simulations. Geochim. Cosmochim. Acta. 46: 901-907. Derenne, S. and Largeau, C. 2001. A review of some important families of refractory macromolecules: Composition, origin, and fate in soils and sediments. Soil Sci. 11(166): 833-847. Desjardins, T., A. C. Filho, A. Mariotii, A. Chauvel, and C. Girardin. 1996. Changes of the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by stable isotope ratio organic carbon. Oecologia 108: 749-756. Duchaufour, P. 1977. Pedology pedogenesis and classfication, London George Allen & Unwin Boston, Sydney. Ehleringer, J. R. and P. W. Rundel. 1989. Stable isotopes: History, units, and instrumentation. In: P. Rundel, W. (ed.) Stable Isotope in Ecological Research. Springer-Verlag, New York. pp. 1-15. Ehleringer, J. R. and R. K. Monson. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Ann. Rev. Ecol. Syst. 24: 411-439. Ehleringer, J. R., T. E. Cerling, and B. R. Helliker. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112: 285-299. Faure, G. 1986. Principles of isotope geology. John Wiley & Sons. Fakoussa, R. M. 1992. Mikroorganismen erschlie'en Kohle-Ressourcen. BioEngineering 4: 21-28. Fedoroff, N., M. A. Courty, and M. L. Thompson. 1990. Micromorphological evidence of paleenvironmental change in Pleistocene and Holocene plaeosols. In: L. A. Douglas. (ed.) Soil Micromorphology: A Basic and Applied Science. Elsevier Sci., New York. pp. 653-665. Follett, R. F., E. A. Paul, S. W. Leavitt, A. D. Halvorson, D. Lyon, and G. A. Peterson. 1997. Carbon isotope ratios of Great Plains soils and in wheat-fallow systems. Soil Sci. Soc. Am. J. 61: 1068-1077. Glaser, B., L. Haumaier, G. Guggenberger, and W. Zech. 1997. Black carbon in soils: The use of benzenecarboxylic acids as specific markers. Org. Geochem. 29(4): 811-819. Goldberg, E. D. 1985. Black carbon in the environment: Properties and distribution. John Wiley & Sons, Inc., United States of America. González-Vila, F. J., P. Tinoco., G. Almendros, and F. Martín. 2001. Py-GC-MS analysis of the formation and degredation stages of charred residues from lignocellulosic biomass. J. Agric. Food Chem. 49: 1128-1131. Gustafsson, Ö. and P. M. Gschwend. 1997. Soot as a strong partition medium for polyclyclic aromatic hydrocarbons. In: R. P. Eganhouse. (ed.) Molecular markers in environmental geochemistry. Am. Chem. Soc., Washington, D. C. pp. 365-381. Guggenberger , G., W. Zech, and H.-R. Schulten. 1994. Formation and mobilization pathways of dissolved organic carbon: Evidence from chemical structural studies of organic carbon fractions in acid forest floor solutions. Org. Geochem. 21: 51-66. Guggenberger , G., W. Zech, and R.J. Thomas. 1995. Lignin and carbohydrate alteration in particle-size separates of an Oxisol under tropical pastures following native savanna. Soil Biol. Biochem. 27: 1629-1638. Griffin, J. J. and E. D. Goldberg. 1975. The fluxes of elemental carbon in coastal marine sediments. Limnol. Oceanogr. 20: 465-463. Hatcher, P. G. and D. J. Clifford. 1997. The organic geochemistry of coal: from plant materials to coal. Org. Geochem. 27(5/6): 251-274. Haumaier, L. and W. Zech. 1995. Black carbon – Possible source of highly aromatic components of soil humic acids. Org. Geochem. 23: 191-196. Hiller, D. A. and G. W. Brümmer. 1997. Milrosondenuntersuchungen an unterschiedlich stark mit Schwermentallen belasteten Böden, 2, Gehalte an Schwermentallen und anderen Elementen in Huminstoffaggregationen, Strustoffen Holzkohlepartikeln, Z. Pflanzenernaehr. Bodenkd. 160: 47-55. Hobbie, E. A. and R. A. Werner. 2004. Intramolecular, compound-specific, and bulk Kuhlbusch, T. A. J. 1998b. Black carbon in soils, sediments and ice cores. In: R. A. Meyers (ed.) Encyclopedia of environmental analysis and remediation. John Wiley, New York. pp. 813-823. Kuhlbusch, T. A. J. and P. J. Crutzen. 1995. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2, Global Biogeochem. Cycle. 9(4): 491-501. Kuhlbush, T. A. J., M. O. Andreae, H. Cachier, J. G. Goldammer, J. –P. Lacaux, R. Shea, and P. J. Crutez. 1996. Black carbon formation by savanna fires: Measurements and implications for the global carbon cycle. J. Geophys. Res. 101(23): 651-665. Lotan, J. E., Brown, J. K., and L. F. Neuenschwander. 1984. Role of fire in lodgepole pine forests. In: Baumgartner, D. M. et al. (eds.) Lodgepole pine: The species and its management. Washington State University, Spokane, WA. pp. 133-152. Ludemann, H. D. and H. Nimz. 1973. Carbon-13 nuclear magnetic resonance spectra of lignins. Biochem. Biophys. Res. Commun. 52(4): 1162-1169. Ludemann, H. D. and H. Nimz. 1974. 13C Kernresonanzspektren von ligninen. 2. Buchenund Fitchen-Bjorkmann-lignin. Die Makromolekulare Chemie 175: 2409-2422. MacDonald, G. M., C. P. S. Larsen, J. M. Szeicz, and K. A. Moser. 1991. The reconstruction of boreal forest fire history from lake sediments: A comparison of charcoal, pollen, sedimentological and geochemical indices. Quat. Sci. Rev. 10: 53- 71. Malcolm, R. L. 1989. Applications of solid-state 13C NMR spectroscopy to geochemical studies of humic substances. In: Hayes, M. H. B. et al. (eds.) Humic Substances II: In Search of Structure. John Wiley & Sons, New York. p. 339-372. Maley, J. 1997. Middle to late Holocene changes in tropical Africaand other continents: palaeomonsoon and sea surface temperature. In: Nüzhet Dalfes, H. et al. (eds.) Third millenium BC climate change and old world collapse. Nato ASI Ser. Global Environ Change. Springer, Berlin, pp. 611–640. Martel, Y. A. and E. A. Paul. 1974. Effects of cultivation on the organic matter of grassland soils as determined by the fractionation and radiocarbon dating. Can. J. Soil Sci. 54: 419-426. Masiello, C. A. and E. R. M. Druffel. 1998. Black carbon in deep sea sediments. Science. 180: 1911-1913. McLauchlan, K. K. and S. E. Hobbie. 2004. Comparison of labile soil organic matter fractionation techniques. Soil Sci. Soc. Am. J. 68(5): 1616-1625. McLean, E.O. 1982. Soil pH and lime requirement. In: Page, A.L. et al. (eds.) Methods of Soil Analysis, part 2. Agronomy Monogr. 9, 2nd ed. ASA and SSSA, Madison, WI. pp. 199-223. Middelburg, J. J., J. Nieuwenhuize, and P. van Breugel. 1999. Black carbon in marine sediments. Mar. Chem. 65: 245-252. Mutch, R.W. 1970. Wildland fires and ecosystems - A hypothesis. Ecology 51: 1046-1051. Neir, A. O. 1950. A redetermination of the relative aboundances of the isotopes of carbon, nitrogen. oxygen, argon and potassium. Phys. Rev. 77: 789. Nicolas, P. 1977. Contribution à l’étude phytogéographique de la forêt du Gabon. Thesis, Ecole des Hautes Etudes en Sciences Sociales, CNRS, Paris. Novakov, T. 1984. The role of soot and primary oxidants in atomspheric chemistry. Sci. Total Environ. 36:1-10. Oades, M. 1995. Recent advances in organomineral interactions: Implications for carbo cycling and soil. In: Huang, P. M. et al. (eds.) Environmental Impact of Soil Component Interactions: Volume 1, Natural and Antropogenic Organics. CRC press/ Lewis Publishers, Boca Raton. pp.119-134. Ode, D. J., L. L. Tieszen, and J. C. Lerman. 1980. The seasonal contribution of C3 and C4 plant species to primary production in a mixed prairie. Ecology 61:1304-1311. O’Leary, M. H. 1988. Carbon isotope in photosynthesis. BioScience 38:328-336. Ohta, S., A. Suzuki, and K. Kumada. 1986. Experimental studies on the behavior of fine organic particles and water- soluble organic matter in mineral soil horizons. Soil Sci. Plant Nutr. Tokyo. 32: 15-26. Paul, E. A., R. F. Follett, S. W. Leavitt, A. Halvorson, G. A. Peterson, and D. J. Lyon. 1997. Radiocarbon dating for determination of soil organic matter pool sizes anddynamics. Soil Sci. Soc. Am. J. 61: 1058-1067. Park, R. and S. Epstein. 1961. Metabolic fractionation of 13C and 12C in plants. Plant Physiol. 36:133-138. Patterson, W. A., K. J. Edwards, and D. J. Maguire. 1987. Microscopic charcoal as a fossil indicator of fire. Quat. Sci. Rev. 6: 3-23. Pearson, G.A. 1923. Natural reproduction of western yellow pine in the southwest. USDA For. Serv. Bull. 1105,Washington, DC. pp. 143. Penner, J. E., H. Eddleman, and T. Novakov. 1993. Towards the development of a global inventory for black carbon emissions. Atmos. Environ. 27(8): 1277-1259. Peterson, B. J. and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics. 18: 293-320. Pessenda, L. C. R., Gomes, M. B. M. Aravena, R., Ribeiro, A. S., Boulet, R., and S. E. M. Gouveia. 1998. The carbon isotope record in soils along a forest-cerrado ecosystem transect and their implications for vegetation changes in the Rondonia state, southwestern Brazilian Amazon region. The Holocene 8: 599-603. Preston, C. M. 1992. the application of NMR to organic matter inputs and processes in forest ecosystems of the Pacific Northwest. The Science of the Total Environment 3: 107-120. Preston, M., J. A. Trofymow, B. G. Sayer and J. Niu. 1997. 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the decomposition studies. Canadian Journal of Botany 75: 1606- 1613. Quideau, S. A. and J. G. Bockheim. 1996. Vegetation and cropping effects on pedogenic processes in a sandy prairie soil. Soil Sci. Soc. Am. J. 60: 536-545. Raison, R. J. 1979. Modifications of the soil environment by vegetation fires: A review. Plant Soil. 51: 73-108. Rhoades, J. D. 1982. Cation exchange capacity. In: Page, A. L. et al. (eds.) Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. Agronomy Monograph 9: 149-157. Sala, O. E., W. K. Lauenroth, S. J. McNaughton, G. Rusch and Xinshi Zhang 1996 Biodiversity and ecosystem functioning in grasslands. In: Mooney, H. A. et al. (eds.) Functional Roles of Biodiversity: A Global Perspective. SCOPE John Wiley & Sons, N. Y. pp.129-149. Sanaiotti, T. M., L. A. Martinella, R. L. Victoria, S. E. Trumbore, and P. B. Camargo. 2002. Past vegetation changes in Amazon savannas determined using carbon isotopes of soil organic matter. Biotropica 34(1): 2-16. Schmidt, M. W. I., H. Knicker, and I. Kögel-Knabner. 1996. Impact of brown coal dust on the organic matter in particle-size fractiontions of a Mollisol. Org. Geochem. 25 : 29- 39. Schmidt, M. W. I., J. O. Skjemstad, E. Gehrt, and I. Kögel-Knabner. 1999. Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci. 50: 351-365. Schmidt, M. W. I. and Noack, A. G. 2000. Black carbon in soil and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem. Cycles 14(3): 777-793. Scott, A. C. 1989. Observations on the nature and origin of fusain. Int. J. Coal Geol. 12: 443-475. Seiler, W. and P. J. Crutzen. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change. 2: 207-247. Shafizadeh, F. 1984. The chemistry of pyrolysis and combustion. In: R. M. Rowell (ed) The chemistry of soild wood. Chem. Soc., Washington, D. C. pp. 481-529. Sinton, P., T. Seastedt, B. Bennett, C. Bock, and J. Bock. 2000. C-3 and C-4 species changes identified by delta C-13 values of soil organic matter in a Colorado prairie. West N. Am. Narturalist 60: 445-450. Skjemstad, J. O., L. J. Janik, M. J. Head, and S. G. McClure. 1993. High energy ultraviolet photo-oxidation: a novel technique for studying physically protected organic matter in clay- and silt-sized aggregates. J. Soil Sci. 44: 485-499. Skjemstad, J. O., P. Clark, J. A. Taylor, J. M. Oads, and S. G. McClure. 1996. The chemistry and nature of protected carbon in soil. Aust. J. Soil Res. 34: 251-271. Skjemstad, J. O., P. Clark, A. Golchin, and J. M. Oads. 1997. Characterization of soil organic matter by soild state 13C NMR spectroscopy. In: Cadisch, G. and K. Giller (eds.) Driven by Nature: Plant Litter Quality and Decomposition. Cab Int., Wallingford, Endland. pp. 253-271. Smith, B. N. and S. Epstein. 1971. Two categoryies of 13C/12C ratio for higher plants. Plant Phytol. 47: 380-384. Sollins, P., C. Glassman, E. A. Paul, C. Swanston, K. Lajtha, J. W. Heil, and E. T. Elliott. 1999. Soil carbon and nitrogen: Pools and fractions. In: Robertson, G. P. et al. (eds.) Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, New York. Stach, E., M. –T. Mackowski, M. Teichmüller, R. Teichmüller, G. H. Taylor, and D. Chandra. 1982. Textbook of coal petrology. Gebrüder Borntraeger, Stuttgart, Germany. Suman, D. O., T. A. J. Kuhlbusch, and B. Lim. 1997. Marine sediments: A reservoir for black carbon and their use as spatial and temporal records of combustion. In: Clark, J. S. et al. (eds.) Sedimental Records of Biomass Burning and Global Change. Springer-Verlag, New York. pp. 271-293. Taylor, G. H., M. Teichmüller, A. Davis, C. F. K. Deissel, R. Littke, and P. Robert. 1998. Organic Petrology. Gebrüder Borntraeger, Stuttgart, Germany. pp. 704. Tieszen, L. L. and A. A. Steuter. 1991. Relationship between community carbon isotope values and nutrient concentrations in a northern mixed prairie. Proc. S. D. Acad. Sci. 70: 55-68. Thomas, G. W. 1982. Exchangeable cation. In: Page, A. L. et al. (eds.) Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. Agronomy Monograph 9: 149-157. Verado, D. J. 1997. Charcoal analysis in marine sediments. Limnol. Oceanogr. 42: 192- 197. Vincens, A., D. Schwartz, H. Elenga, I. Reynaud-Farrera, A. Alexandre, J. Bertaux, A. Mariotti, L. Martin, JD. Meunier, F. Nguetsop, M. Servant, S. Servant-Vildary, D. Wirrmann. 1999. Forest response to climate changes in Atlantic Equatorial Africa during the last 4000 years BP and inheritance on the modern landscapes. J. Biogeography, 26 : 879-885. Wang, Y., T. E. Cerling, and W. R. Effland. 1993. Stable isotope ratios of soil carbonate and soil organic-matter as indicators of forest invasion of prairie near Ames, Iowa. Oecologia 95: 365-369. Ward, D.E. 1990. Factors influencing the emissions of gases and particulate matter from biomass burning. In: Goldammer, J. G. (ed.) Fire in the Tropical Biota: Ecosystem Processes and Global Challengea. Springer-Verlag, New York. pp. 418- 436. Wershaw, R.L. 1985. Application of nuclear magnetic resonance spectroscopy for determining functionality in humic substances. In: Aiken, G. R. et al. (eds.) Humic Substances in Soil, Sediment, and Water. John Wiley & Sons, New York. pp. 561- 582. White, L. J. T., K. Abernathy, R. Oslisly, and J. Maley. 1996. L’okoumé (Aucoumea klaineana): expansion et déclin d’un arbre pionnier en Afrique Centrale Atlantique au cours de l’Holocène. In: Symposium international: Dynamique à long terme des écosystèmes forestiers intertropicaux, Bondy, pp.195–198. Willman, G. and R. M. Fakoussa. 1997. Biological bleaching of water soluble coal macromolecules by a basidiomydete strain. Appl. Microbiol. Biotechnol. 47: 95-101. Winkler, M. G. 1985. Charcoal analysis for paleoenvironmental interpretation: A chemical assay. Quat. Res. 23: 313-326. Winkler, M. G. 1994. Sensing plant community and climate change by charcoal-isotope analysis. Ecoscience. 1: 340-345. Wilson, M. A. 1984. Soil Organic matter maps by nuclear magnetic resonance. J. Soil Sci. 35: 209-215. Wilson, M. A., G. Patrick, G. Hatcher. 1988. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state 13C nuclear magneticresonance. Organic Geochemistry 12: 539-546. Wilson, M. A. 1989. Solid-state nuclear magnetic resonance spectroscopy of humic substances: basic concepts and techniques. In: Hayes, M.H.B. et al.(eds.) Humic Substances II: In Search of Structure. John Wiley & Sons, Chichester. pp. 309-338. Wilson, W. A. 1987. NMR Techniques and Applications in Geochemistry and Soil Chemistry, 1st ed., Pergamon Press, London. Youta Happi, J. 1998. Arbres contre graminées: la lente invasion de la savane par la forêt au Centre-Cameroun. Thesis, Université de Paris-Sorbonne (Paris 4). Zepp, R. G. and C. Sonntag. 1995. The role of nonliving organic matter in the Earths carbon cycle. John Wiley & Sons, New York. pp. 342. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35436 | - |
dc.description.abstract | 暸解植群改變與演替機制有助於推測植群在環境變遷時的適應
狀態,可為森林經營提供重要理論依據。臺灣二葉松被認為是以林火來維持演替狀態,但缺乏直接證據證明。選擇臺灣中部塔塔加鞍部地區觀察草原與森林植群的演變遷過程,本研究目的即透過穩定碳同位素推估植群之變遷,並探討植群改變是否對土壤有機碳的分解與組成造成影響,又是否曾有林火發生的黑炭存在。 本研究樣區為塔塔加鞍部北面集水區,包括各植群與其相鄰的推移帶:二葉松疏林區、草原區、草原與鐵杉森林推移帶、鐵杉森區、鐵杉與雲杉林推移帶及雲杉森林區,並於所規劃集水區外選取兩參考樣點:二葉松森林與麟趾山草原區。研究分析土壤基本理化質、並分別將植體、土壤有機碳、以及分解試驗後的物質進行穩定碳同位素比值分析(GIRMS)與碳同位素核磁共振分析(13C CPMAS NMR)。運用穩定碳同位素比值辨識 C3 與 C4 植物,進行土壤分解試驗來探討土壤性質的轉變以及黑炭存在與否。 土壤基本理化性質顯示土壤 pH 值為 3.1~ 5.6,除鐵杉與雲杉推移帶區(EHS)因位於小型崩塌區, pH 值約在 6.8~ 7.6。總碳量皆在1.4~ 19.0 %間,惟參考樣點麟趾山草原(G)總碳量皆較??,約12.7~31.62%。此外,陽離子交換容量為 32~ 4.9 cmol(+)kg-1、可交換陽離子含量在 12 cmol(+)kg-1 以下,鹽基飽和度則約在 6.04% 以下,除雲杉、雲杉與鐵杉間推移帶(EHS)約在 12~ 60%。 植物穩定碳同位素分析結果顯示,當地主要的 C4 型植物為高山 芒, C3 植物則包括二葉松、鐵杉、雲杉、玉山箭竹等。研究地區各剖面的深層土壤顯示 C4 植物所佔比例在 28 ~ 49% 之間,淺層土壤則顯示有 C3植物增加之趨勢:其中二葉松疏林與草原區早期 C3、 C4 植物比例相當,土壤碳同位素比值(δ13C)相近(-17.45 ~ -24.66 permil),但 C4 植物漸漸成為主要優勢物(~60%)。此外,塔塔加草原地區在民國 50 年曾發生林火,又試驗前有機碳可能已初步進行分解,土壤酸解分析結果則推測可能有黑炭存在。 然而,鐵杉與草原推移帶、鐵杉森林、雲杉森林與其推移帶則顯示 C3 植物維持優勢,且變動較小, δ13C 約 -23 ~ -26 permil(C4 植物所佔比例約在 20~ 30%)。 土壤分解試驗可了解有機碳的分解動態,結果顯示仍殘存有不溶於酸之烷基碳以及難以分解的芳香基碳,而土壤在剖面深度增加時,土壤中芳香基碳的比例相對增加;兩者說明,烷基碳可抵抗酸性 化學分解,而芳香基碳則具有化學與微生物分解抵抗力與穩定性。 由於土壤分解試驗無法完全分解除了黑炭之外的有機物質,無法直接顯示是否存在黑炭;因此不適宜作為分析黑炭定量之試驗,相關方法尚須進一步探討。 又高山芒為此樣區中最主要的 C4 植物,若能暸解高山芒生態適應 與競爭優勢,有助於推測植群變遷之機制。 | zh_TW |
dc.description.abstract | To understand vegetation change and succession is helpful for predicting vegetation adaptation to climate change and providing an important theoretical basis for forest management. It is believed that pine (Pinus taiwanensis) forest keeps its succession through wildfires, but yet no direct evidence is proposed to verify such a mechanism. Therefore, our objectives were to infer possible vegetation changes at Tatachia Long Term Ecological Research area using carbon stable isotope and black carbon. And the soil organic carbon hydrolysis method was used to infer the existence of black carbon and the effect of vegetation change on soil carbon dynamics.
In this study, the northern catchment of the research site was selected. The main vegetation types included pine woodland (P), meadow (M), ecotone between hemlock forest and meadow (EHM), hemlock forest (H), ecotone between hemlock and spruce forest (EHS), and spruce forest (S). Additionally, two reference sites were chosen at a pine forest (P0) and grassland (G) outside the catchment. Analyses included soil basic physicochemical properties, δ13C and 13C NMR of soil and plant samples, HCl-insoluble organic carbon hydrolysis. δ13C can be used to identify vegetation composition of C3 and C4 plants. HCl-insoluble organic carbon hydrolysis combined with 13C NMR can indicate black carbon produced by fires in soil. According to the analysis of soil basic physicochemical properties, soil pH ranges from 3.1 to 5.6 except for EHS (6.8 -7.6). The total carbon content ranges from 1.4 to 19.0% except for G that has 12.7 -31.6%. Moreover, the capacity of exchangeable cations is 4.9-32 cmol(+)kg-1. The content of the exchangeable cations of all samples is below 12 cmol(+)kg-1 and the base saturation is below 6.04 % except for EHS and S that range from 12 to 60%. Results of plant δ 13C analysis showed that only Miscanthus transmorrisonensis is a C4 plant among the collected samples while C3 plants include pine, hemlock, spruce, and bamboo. In the deep part of soil profiles, the percentage of C4 plant in soil organic carbon of all samples is 28- 49%. However, in the surface part the C4 plant ratio increases with increasing soil depth. In the P and M pedons, both have a similar δ13C distribution that ranges from -17.45 to -24.66?. The distribution of δ13C indicates C4 plants increases with time to 60%. Additionally, it was once reported that a fire occurred in the M plot in 1961. Results obtained from carbon stable isotope, HCl-insoluble organic carbon and 13C NMR analysis demonstrated that soil organic matter decomposed by fire at 10– 15 cm depth and resulted in the increase of alkyl-C and aromatic-C, suggesting black carbon was present in the M plot possibly due to wild fires. However, the δ13C values range from -23 to -26 ? in the plots of EHM, H, S as well as EHS, suggesting C3 plant dominated in those plots with little variations. The dynamics of soil organic carbon can be understood by soil acidhydrolysis method. The results in this study showed that HCl-insoluble alkyl-C and aromatic-C remained after acid digestion. In the soil profile, the ratio of aromatic carbon increased with increasing soil depth. Synthetically,the alkyl-C is refractory to chemical hydrolysis while aromatic-C is stable and resistant to chemical and biological degradation. After the hydrolysis with 6M HCl, the samples were not completely digested according to the 13C NMR results. Except for black carbon, alkyl-C was still present after the digestion. Thus the black carbon identification method should be improved. Since Miscanthus transmorrisonensis is the dominate C4 plant, it will be helpful in understanding the mechanism of vegetation change through the investigations of its ecological adaptation and competition in this study area. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:52:44Z (GMT). No. of bitstreams: 1 ntu-94-R92625030-1.pdf: 12878219 bytes, checksum: fc4b73e1c9da48df06fe4ea0c52350ce (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄
表目錄 ----------------------------------------------------------------------------vi 圖目錄 ----------------------------------------------------------------------------vii 中文摘要---------------------------------------------------------------------------viii 英文摘要-----------------------------------------------------------------------------x 第一章、前言 第一節、前人研究 (一)演替與植群變遷--------------------------------------------1 (二)植群變遷之研究方法--------------------------------------2 第二節、問題提出與研究目的-------------------------------------------4 第二章、研究植群變遷之方法概?? 第一節、穩定性碳同位素 (一)穩定性碳同位素的計量-----------------------------------5 (二)穩定性碳同位素分異機制--------------------------------6 (三) 穩定性碳同位素應用------------------------------------10 第二節、黑炭 (一)黑炭之定義與成因----------------------------------------12 (二)黑炭之自然分解-------------------------------------------13 (三)黑炭之鑑定與量化方法----------------------------------14 (四)黑炭技術之應用-------------------------------------------16 第三節、碳同位素核磁共振分析技術 (一)碳同位素核磁共振分析原理----------------------------17 (二)有機碳官能基之化學位移與區分----------------------18 第三章、材料與方法 第一節、研究區域 v (一)地理位置----------------------------------------------------19 (二)地質與氣候-------------------------------------------------19 (三)植被組成----------------------------------------------------21 第二節、研究試驗設計 --------------------------------------------------21 第三節、樣品處理 (一)土壤樣品----------------------------------------------------24 (二)植物樣品----------------------------------------------------24 第四節、分析方法 (一)土壤基本理化性質----------------------------------------25 (二)穩定性碳同位素—氣相比值質譜儀-------------------27 (三)固態偏極化魔角旋轉碳同位素核磁共振圖譜分析-27 (四)黑炭分析方法----------------------------------------------28 第四章、結果 第一節、土壤基本理化性質 (一)土壤物理性質----------------------------------------------29 (二)土壤化學性質----------------------------------------------31 第二節、穩定性碳同位素 (一)植物之 !13C 分析------------------------------------------35 (二)土壤有機質之 !13C 分析 --------------------------------38 第三節、 固態偏極化魔角旋轉碳同位素核磁共振圖譜分析 (一)植物之官能基分析---------------------------------------41 (二)土壤表層有機質之官能基分析------------------------45 (三)土壤剖面之官能基分析—以草原區為例------------47 (四)黑炭之官能基分析---------------------------------------50 vi 第五章、討論 第一節、植體與土壤有機碳-------------------------------------------52 第二節、黑炭分析方法之應用與探討-------------------------------54 第三節、植群變遷現象與機制探討----------------------------------61 第六章、結論---------------------------------------------------------------------66 參考文獻 --------------------------------------------------------------------------67 附錄 | |
dc.language.iso | zh-TW | |
dc.title | 利用穩定碳同位素與黑炭推估臺灣塔塔加地區主要植群型可能之變遷 | zh_TW |
dc.title | Using Stable Carbon Isotope and Black Carbon to Infer the Possible Major Vegetation Types Dynamics in TaTaChia Area, Central Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 王明光 | |
dc.contributor.oralexamcommittee | 金恆鑣,邱志郁,郭幸榮 | |
dc.subject.keyword | 土壤有機質,穩定性碳同位素,黑炭,不被酸分解的碳,植群變遷,塔塔加長期生態研究區, | zh_TW |
dc.subject.keyword | soil organic carbon,carbon stable isotope,black carbon,HCl-hydrolyzable C,solid-state 13^C NMR,vegetation change,Tatachia LTER, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-28 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 12.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。