Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35424
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文進
dc.contributor.authorMeng-Hui Linen
dc.contributor.author林孟輝zh_TW
dc.date.accessioned2021-06-13T06:52:12Z-
dc.date.available2007-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-28
dc.identifier.citation[1] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC Video Coding Standard,” IEEE Transactions on Circuits and Systems for Video Technology 13, pp. 560–576, July 2003
[2] T. Stockhammer,M. Hannuksela, and T.Wiegand, “H.264/AVC in wireless environments,” IEEE Trans. Circuits System. Video Technology, vol. 13, pp. 657–673, July 2003.
[3] S. Wenger: “H.264/AVC over IP,” IEEE Transactions on Circuits and Systems for Video Technology, Volume 13, Issue: 7. July 2003
[4] 1. Y. Wang and Q. Zhu, “Error control and concealment for video communication: a review,” Proc. IEEE, vol. 86, pp. 974-997, 1998.
[5] J. D. Villasenor, Y.-Q. Zhang and J. Wen, “Robust video coding algorithms and systems,” Proceedings of the IEEE, vol. 87, pp. 1724 -1733. Oct. 1999.
[6] Y. Wang, S. Wenger, J. Wen, and A. G. Katsaggelos, 'Error resilient video coding techniques', IEEE Signal Processing Magazine, vol. 17, no. 4, pp.~61-82, July 2000. Special issue on Multimedia Communications over Networks.
[7] M. Etoh, T. Yoshimura, “Advances in wireless video delivery” Proc. IEEE. Vol.93, NO. 1, Jan 2005
[8] Distributed Coding A. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Transactions on Information Theory IT-22, pp. 1–10, Jan. 1976.
[9] A. Wyner, “On source coding with side information at the decoder,” IEEE Transactions on Information Theory IT-21, pp. 294–300, May 1975.
[10] R. Zamir, “The rate loss in the Wyner-Ziv problem,” IEEE Transactions on Information Theory 42, pp. 2073–2084, Nov. 1996.
[11] S. Shamai, S. Verdu, and R. Zamir, “Systematic lossy source/channel coding,” IEEE Transactions on Information Theory 44, pp. 564–579, Mar. 1998.
[12] B. Girod, A. Aaron, S. Rane, D. Rebollo, 'Distributed Video Coding' Proc. IEEE, Special Issue on Advances in Video Coding and Delivery. Jan. 2005
[13] A. Aaron, S. Rane, R. Zhang, and B. Girod, “Systematic lossy forward error protection for error resilient digital video broadcasting—a Wyner–Ziv coding approach,” Proc. IEEE, Image Processing. Oct. 2004.
[14] A. Aaron, S. Rane, R. Zhang, and B. Girod, “Wyner-Ziv coding for video - Applications to compression and error resilience,” in Proc. IEEE Data Compression Conference, pp. 93–102, (Snowbird, Utah), Mar. 2003.
[15] A. Aaron, S. Rane, D. Rebollo-Monedero, and B. Girod, “Systematic lossy forward error protection for video waveforms,” in Proc. IEEE Int. Conf. Image Processing, 2003, pp. I-609–I-612.
[16] R. Puri and K. Ramchandran, “PRISM, A Robust Video Coding Architecture based on Distributed Coding Principles,” in 40th Allerton Conference on Communication, (Allerton, Illinois), Oct. 2002.
[17] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority encoding transmission,” IEEE Transactions on Information Theory 42, pp. 1737–1744, Nov. 1996.
[18] A. Mohr, E. Riskin, and R. Ladner, “Unequal loss protection: Graceful degradation of image quality over packet erasure channels through forward error correction,” IEEE Journal on Selected Areas in Communications 18, pp. 819–828, June 2000.
[19] U. Horn, K. Stuhlm¨uller, M. Link, and B. Girod, “Robust internet video transmission based on scalable coding and unequal error protection,” Image Communication, Special Issue on Real-time Video over the Internet 15, pp. 77–94, Sept. 1999.
[20] M. Johanson, 'Adaptive forward error correction for real-time Internet video', Proceedings of the 13th Packet Video Workshop, Nantes, France, April 2003.
[21] K. Park and W. Wang, “AFEC: an adaptive forward error correction protocol for end-to-end transport of real-time traffic”, Proceedings of ICCCN, 1998.
[22] K. Park and W. Wang. QoS-Sensitive Transport of Real-Time MPEG Video Using Adaptive Forward Error Correction. In Proceedings of IEEE Multimedia Systems, pages 426 – 432, June 1999.
[23] U. Horn, K. Stuhlm¨uller, M. Link, and B. Girod, “Robust internet video transmission based on scalable coding and unequal error protection,” Image Communication, Special Issue on Real-time Video over the Internet 15, pp. 77–94, Sept. 1999.
[24] Y. Charfi and R. Hamzaoui, “Packet loss protection of scalable video bitstreams using forward error correction and feedback”
[25] W. Zhu, Q. Zhang, and Y.-Q. Zhang, “Network-adaptive rate control with unequal loss protection for scalable video over Internet,” in Proc. ISCAS 2001, vol. 5, May 2001, pp. 109–112.
[26] Lee Y-C, Kim J, Altunbasak Y, Mersereau RM, “Performance comparisons of layered and multiple description coded video streaming over error-prone networks,” In: Proc. international conference on communications, Anchorage, AK. IEEE Press, New York, 1:35-39 (2003)
[27] D. Slepian and J.K. Wolf, “Noiseless coding of correlated information sources,’’ IEEE Trans. Inform. Theory, vol. 19, no. 4, pp. 471–480, 1973.
[28] A. D. Wyner, “On source coding with side information at the decoder,” IEEE Transactions on Information Theory, May, 1975.
[29] S. Pradhan, J. Chou, and K. Ramchandran, “Duality between source coding and channel coding and its extension to the side information case,” IEEE Trans. Inform. Theory, vol. 49, no. 5, pp. 1181–1203, 2003.
[30] R. Barron, B. Chen, and G. Wornell, “The duality between information embedding and source coding with side information and some applications,” IEEE Trans. Inform. Theory, vol. 49, pp. 1159–1180, May 2003.
[31] V. Goyal, “Multiple description coding: compression meets the network,” IEEE Signal Processing Mag., vol. 18, no. 5, pp. 74–93, 2001.
[32] S. S. Pradhan and K. Ramchandran, “Enhancing analog image transmission systems using digital side information: a new wavelet based image coding paradigm,” in Proc. IEEE Data Compression Conference, pp. 63–72, (Snowbird, Utah), Mar. 2001.
[33] E. O. Elliott. A model of the switched telephone network for data communications. Bell. Syst. Techn. J., 44:89-109, Jan. 1965.
[34] Z Xiong, A Liveris, S Cheng, “Distributed source coding for sensor networks” IEEE Signal Processing Magazine, 2004
[35] ISO/IEC 14496–10:2003, “Coding of Audiovisual Objects—Part 10: Advanced Video Coding,” 2003, also ITU-T Recommendation H.264“Advanced video coding for generic audiovisual services.”
[36] J. Osterman, J. Bormans, P. List, ' Video coding with H.264/AVC: Tools, Performance, and Complexity,' IEEE Circuits and Systems Magazine, Vol. 4, No. 1, pp. 7-21
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35424-
dc.description.abstract本論文探討H.264/AVC視訊於無線網路上傳輸時的錯誤保護。基於近來分散式視訊編碼(distributed video coding)與Wyner-Ziv問題的研究成果,我們實作與探討失真式錯誤回復技術,可以有效對抗網路錯誤造成的視訊品質損失。我們以Wyner-Ziv編碼的概念來重建與保護視訊之波形,當網路錯誤率上升時,此失真式錯誤保護機制能提供平順退化的畫面品質,不會產生明顯的畫面瑕疵,以達到令人愉快的畫面觀看。另外,面對多變的網路變化,我們亦結合網路調適機制,動態地最佳化錯誤保護機制,以保證穩定的畫面品質。
實驗結果證明,此失真式錯誤保護機制能在廣泛封包遺失率範圍內保證與提供可接受且視覺平順的視訊品質。我們也證實,結合了網路調適機制,此失真式錯誤保護機制可以提供平順視訊品質調整與更穩定的保護能力。
zh_TW
dc.description.abstractRecent research efforts on distributed video coding and Wyner-Ziv problems have revealed an exciting, new possibility for video applications. The Wyner-Ziv coding paradigm has suggested a novel protection scheme that can effectively combat packet losses. In this thesis, we investigate the application of lossy error protection for H.264/AVC video streaming over wireless network. Video waveforms are protected using the Wyner-Ziv coding concept, resulting in graceful video quality degradation in the presence of increasing network error rate. In addition, we propose a feedback-based network adaptation algorithm to dynamically optimize the performance of error protection in the presence of changing network dynamics.
In our design, we have applied the systematic error protection framework to the baseline H.264/AVC video stream. The systematic portion consists of unprotected video bitstream. At the same time, the Wyner-Ziv encoder generates the second, coarser representation of the unprotected, original video bitstream at much lower rate than the original. Then, the Wyner-Ziv decoder utilized the side information from the video decoder to reconstruct the coarse video waveform. When network packets are lost, the erroneous video frame can be recovered by the coarse video waveform. As a result, the video distortion caused by network packet loss is bounded by the Wyner-Ziv description. The Wyner-Ziv decoder also sends feedback messages to the Wyner-Ziv encoder; then the Wyner-Ziv encoder can adapt to varying network condition and achieve graceful video quality degradation.
Based on our experimental results, we have shown that lossy error protection can provide acceptable, eye-pleasing video quality over a large range of packet loss rates. When combining with our network adaptation algorithm, we have shown that the lossy error protection scheme can be further enhanced to provide smooth quality adaptation for H.264/AVC video transmission over wireless network.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:52:12Z (GMT). No. of bitstreams: 1
ntu-94-R92922077-1.pdf: 1235698 bytes, checksum: 38ad74f805f96a5f81b631e9bdaba38f (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents謝誌 I
中文摘要 II
ABSTRACT III
LIST OF FIGURES V
CHAPTER 1. INTRODUCTION 1
1.1 BACKGROUND 1
1.2 MOTIVATION 2
1.3 PROBLEM STATEMENT 5
1.4 CONTRIBUTION 6
CHAPTER 2. RELATED WORK 8
2.1 PREFACE 8
2.2 CONVENTIONAL CHANNEL CODING PROTECTION 9
2.3 SCALABLE VIDEO CODING AND MULTIPLE DESCRIPTION CODING 12
2.4 DISTRIBUTED SOURCE CODING 15
CHAPTER 3. SYSTEM ARCHITECTURE 21
3.1 PREFACE 21
3.2 WYNER-ZIV LOSSY ERROR PROTECTION 21
3.3 SYSTEM ARCHITECTURE 24
3.3.1 H.264/AVC VIDEO SENDER AND RECEIVER 26
3.3.2 WYNER-ZIV ENCODER AND DECODER 28
3.4 NETWORK MODELING AND FEEDBACK-BASED ADAPTATION 31
CHAPTER 4. EXPERIMENTAL RESULTS 36
4.1 PREFACE 36
4.2 SCENARIO 1: PURE LEP WITHOUT FEEDBACK 37
4.3 SCENARIO 2: NETWORK-ADAPTIVE LOSSY ERROR PROTECTION 41
CHAPTER 5. CONCLUSION AND FUTURE WORKS 46
5.1 CONCLUSION 46
5.2 FUTURE WORKS 47
BIBLIOGRAPHY 48
dc.language.isoen
dc.subject影像傳輸zh_TW
dc.subject錯誤回復zh_TW
dc.subjectvideo streamingen
dc.subjecterror resilient codingen
dc.subjectH.264en
dc.titleH.264/AVC影像傳輸其錯誤回復與失真式錯誤保護之研究zh_TW
dc.titleInvestigation of Lossy Error Protection for Error-Resilient H.264/AVC Video Transmissionen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳家麟,朱浩華,周承復,黃奕勤
dc.subject.keyword錯誤回復,影像傳輸,zh_TW
dc.subject.keywordH.264,error resilient coding,video streaming,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved