請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35412
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張宏鈞(Hung-Chun Chang) | |
dc.contributor.author | Jieh-Ming Huang | en |
dc.contributor.author | 黃介銘 | zh_TW |
dc.date.accessioned | 2021-06-13T06:51:42Z | - |
dc.date.available | 2005-08-01 | |
dc.date.copyright | 2005-08-01 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-28 | |
dc.identifier.citation | [1] Abeeluck, A. K., N. M. Litchinitser, C. Headley, and B. J. Eggleton, 'Analysis of spectral characteristics of photonic bandgap waveguides,' Opt. Express, vol. 10, pp. 1320-1333, 2002.
[2] Barkou, S. E., J. Broeng, and A. Bjarklev, 'Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,' Opt. Lett., vol. 24, pp. 46-48, 1999. [3] Berenger, J. P., 'A perfectly matched layer for the absorption of electromagnetic waves,' J. Comp. Phys., vol. 114, pp. 185-200, 1994. [4] Benabid, F., J. C. Knight, G. Antonopoulos, and P. St. J. Russell, 'Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,' Science, vol. 298, pp. 399-402, 2002. [5] Benistry, H., 'Modal analysis of optical guides with two-dimensional photonic band-gap boundries,' J. Appl. Phys., vol. 79, pp. 7483-7492, 1996. [6] Bodewig, E., Matrix Calculus. Amsterdam: North Holland Pub. Co., 1956. [7] Brechet, F., J. Marcou, D. Pagnoux, and P. Roy, 'Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,' Opt. Fiber Technol., vol. 6, pp. 181-191, 2000. [8] Chew, W. C., and W. H. Weedon, 'A 3-D perfectly matched medium from modified Maxwell's equations with stretched coordinates,' Microwave Opt. Tech. Lett., vol. 12, pp. 599-604, 1994. [9] Chen, H. J., Hybrid-elements FEM based complex mode solver for optical waveguides with triangular-mesh generator. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003. [10] Cregan, R. F., B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, 'Single-mode photonic band gap guidance of light in air,' Science, vol. 285, pp. 1537-1539, 1999. [11] Ferrando, A., E. Silvestre, J. J. Miret, P. Andres, and M. V. Andres, 'Full-vector analysis of a realistic photonic crystal fiber,' Opt. Lett., vol. 24, pp. 276-278, 1999. [12] Hesthaven, J. S., and D. Gottlieb, 'A stable penalty method for the compressible Navier-Stokes equations. II. One dimensional domain decomposition schemes,' SIAM J. Sci. Comput., vol. 18, pp. 658-685, 1997. [13] Hsu, S. M., Full-vectorial finite element beam propagation method based on curvilinear hybrid edge/nodal elements for optical waveguide problems. M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2004. [14] Koshiba, M., and K. Saitoh, 'Numerical verification of degeneracy in hexagonal photonic crystal fibers,' IEEE Photon. Technol. Lett., vol. 13, pp. 1313-1315, 2001. [15] Koshiba, M., and Y. Tsuji, 'Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,' J. Lightwave Technol., vol. 18, pp. 737-743, 2000. [16] Knight, J. C., T. A. Birks, P. St. J. Russell, and D. M. Atkin, 'All-silica single-mode optical fiber with photonic crystal cladding,' Opt. Lett., vol. 21, pp. 1547-1549, 1996. [17] Kuhlmey, B. T., T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, 'Multipole method for microstructured optical bers. II. Implementation and results,' J. Opt. Soc. Am. B, vol. 19, pp. 2331-2340, 2002. [18] Litchinitser, N. M., A. K. Abeeluck, C. Headley, and B. J. Eggleton, 'Antiresonant reflecting photonic crystal optical waveguides,' Opt. Lett., vol. 27, pp. 1592-1594, 2002. [19] Litchinitser, N. M., and S. C. Dunn, 'Application of an ARROW model for designing tunable photonic devices,' Opt. Express, vol. 12, pp. 1540-1550, 2004. [20] Lee, J. F., Finite element method with curvilinear hybrid edge/nodal triangular-shape elements for optical waveguide problems. M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2002. [21] Obayya, S. S. A., B. M. Azizur Rahman, T. V. Grattan, and H. A. El-Mikati, 'Full vectorial nite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides,' J. Lightwave Technol., vol. 20, pp. 1054-1060, 2002. [22] Ouzouno, D. G., F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, 'Generation of megawatt optical solutions in hollow-core photonic bandgap fiber,' Science, vol. 301, pp. 1702-1704, 2003. [23] Qiu, M., 'Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,' Microwave Opt. Technol. Lett., vol. 30, pp. 327-330, 2001. [24] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, 'A perfectly matched anisotropic absorber for use as an absorbing boundary condition,' IEEE Trans. Antennas Propagat., vol. 43, pp. 1460-1463, 1995. [25] Saitoh, K., and M. Koshiba, 'Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,' J. Lightwave Technol., vol. 19, pp. 405-413, 2001. [26] Saitoh, K., and M. Koshiba, 'Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,' IEEE J. Quantum Electron., vol. 38, pp. 927-933, 2002. [27] Saitoh, K., and M. Koshiba, 'Leakage loss and group velocity dispersion in air-core photonic bandgap bers,' Opt. Express, vol. 11, pp. 3100-3109, 2003. [28] Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, 'Mixed finite element beam propagation method,' J. Lightwave Technol., vol. 16, pp. 1336-1341, 1998. [29] Snyder, A. W., and J. D. Love, Optical waveguide theory. New York: Chapman and Hall, 1983. [30] Selleri, S., L. Vincetti, and M. Zoboli, 'Full-vector finite-element beam propagation method for anisotropic optical device analysis,' IEEE J. Quantum Electron., vol. 36, pp. 1392-1401, 2000. [31] Toyama, H., K. Yasumoto, and H. Jia, 'Electromagnetic scattering and guidance by two-dimensinal photonic bandgap structures,' in XXIIth General Assembly of the International Union of Radio Science Proceedings (CD-ROM), paper DB.P.2, Maastricht, the Netherlands, August 17-24, 2002. [32] Tsuji, Y., and M. Koshiba, 'Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,' J. Lightwave Technol., vol. 18, pp. 618-623, 2000. [33] Weat, J. A., N. Venkataraman, C. M. Smith, and M. T. Gallagher, 'Photonic crystal fibers,' in Proc. European Conf. Opt. Commun., paper Th.A.2.2 2001. [34] White, T. P., R. C. McPhedran, and C. Martijn de Sterke, 'Resonance and scattering in microstructured optical fibers,' Opt. Lett., vol. 27, pp. 1977-1979, 2002. [35] White, T. P., B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, L. C. Botten, 'Multipole method for microstructured optical bers. I. Formulation,' J. Opt. Soc. Am. B, vol. 19, pp. 2322-2330, 2002. [36] Yu, C. P., Improved finite-difference frequency-domain method for modal analysis of optical waveguides and photonic crystal devices. Ph.D. Dissertation, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2004. [37] Yu, C. P., and H. C. Chang, 'Applications of the Finite Difference Mode Solution Method to Photonic Crystal Structures,' Opt. Quantum Electron., vol. 36, pp. 145-163, 2004. [38] Zhang, L., and C. Yang, 'Polarization-dependent coupling in twin-core photonic crystal fibers,' J. Lightwave Technol., vol. 22, pp. 1367-1373, 2004. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35412 | - |
dc.description.abstract | 為了瞭解在光子學領域上日益重要的光子晶體光纖之模態特性,我們採用高精準度的曲線式混合基底元素之全向量有限元素特徵值解法以及虛軸波束傳播法來進行分析。由於有限元素法使用非均勻切割的曲線形元素,是故可精確分析屬複雜結構的光子晶體光纖。本論文分析了數種光子晶體光纖。首先分析光子晶體光纖耦合器之模態及其耦合強度,分析結果呈現和傳統的耦合器一致的趨勢。接著,分析空氣纖心的光子能隙光纖其損耗、群速色散、和有效模態面積,藉由增加空氣洞環的數目、提高空氣洞半徑對洞間距的比例或是適當設計空氣纖心的形狀,損耗可以降低。最後,我們分析短波長時光子晶體光纖的頻譜特徵,頻譜圖可由圓柱孔洞的直徑和填充在內之液體的折射係數決定。其導波機制可藉由視此光子晶體光纖為一抗諧振反射光纖的解析理論來解釋,此解析理論可精準預測相關數值結果。 | zh_TW |
dc.description.abstract | In order to comprehend the properties of photonic crystal fibers (PCFs), which play a more and more important role in photonics applications, a variety of PCFs are investigated by using a high-accuracy full-vectorial finite element (FE) mode solver and the finite element imaginary distance beam propagation method (FE-ID-BPM) based on curvilinear hybrid edge/nodal elements. Because of the utilization of the nonuniform element division and the curvilinear elements, PCFs having complex structures can be analyzed accurately. In this thesis, several PCFs are discussed in detail. First, the propagating characteristics and the coupling strength of twin-core PCFs are studied and explained. It is observed that the computed results of twin-core PCFs have similar trends with those of conventional fiber couplers. Next, the analysis of air-core photonic bandgap fibers (PBGFs) is performed through calculating the con nement losses, the group velocity dispersions, and the effective mode areas. It is demonstrated that the con nement losses can be reduced by increasing the number of air-hole rings, raising the diameter to hole pitch ratio, or appropriately designing the air-core shape. Finally, we analyze the loss spectra of PCFs especially at shorter wavelengths. The numerical results show that the loss spectra are strongly determined by the size of the cylinder inclusions and the refractive index of the liquid lled in these inclusions of the PCFs. Besides the numerical investigation, an analytical theory which treats the PCFs as antiresonant reflecting optical waveguides is adopted to explain the guiding mechanism. Calculated wavelength dependence of the effective refractive indices of the guided modes is well predicted by the analytical theory. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:51:42Z (GMT). No. of bitstreams: 1 ntu-94-R92941032-1.pdf: 7605543 bytes, checksum: ee286eaf20de0a7d034d3c04f47e99eb (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . .1 1.2 Chapter Outline . . . . . . . . . . . . . . . .4 2 Mathematical Formulations and Related Techniques 5 2.1 Concepts of Perfectly Matched Layers . . . . . 5 2.2 Finite Element Mode Solver . . . . . . . . . . 8 2.3 Finite Element Beam Propagation Method . . . .11 3 Analysis of Twin-Core Photonic Crystal Fibers 22 3.1 Overview . . . . . . . . . . . . . . . . . . .22 3.2 Discussion of Modal Characteristics . . . . . 23 4 Analysis of Modal Characteristics of Air-Core Photonic Bandgap Fibers 37 4.1 Overview . . . . . . . . . . . . . . . . . . .37 4.2 Connement Loss and Group Velocity Dispersion 38 4.3 Eects of Air-Core Region Shape . . . . . . . 41 4.4 Eects of Hole Diameter to Pitch . . . . . . .42 5 Analysis of Spectral Characteristics of Photonic Crystal Fibers 65 5.1 Overview . . . . . . . . . . . . . . . . . . .65 5.2 Calculation Results . . . . . . . . . . . . . 66 5.3 Analytical Model . . . . . . . . . . . . . . .69 5.4 Summary . . . . . . . . . . . . . . . . . . . 73 6 Conclusion 88 | |
dc.language.iso | en | |
dc.title | 以有限元素法分析光子晶體光纖之模態特性 | zh_TW |
dc.title | Analysis of Modal Characteristics of Photonic Crystal Fibers Using Finite Element Methods | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳俊雄(Chun-Hsiung Chen),鍾世忠(Shyh-Jong Chung) | |
dc.subject.keyword | 有限元素法,光子晶體光纖, | zh_TW |
dc.subject.keyword | finite element method,photonic crystal fibers, | en |
dc.relation.page | 95 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-28 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 7.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。