請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35382完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李玉梅(Yu-May Lee) | |
| dc.contributor.author | Jui-Hsia Weng | en |
| dc.contributor.author | 翁瑞霞 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:50:26Z | - |
| dc.date.available | 2008-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-28 | |
| dc.identifier.citation | Adams, S.L., Safer, B., Anderson, W.F. and Merrick, W.C. (1975) Eukaryotic initiation complex formation. Evidence for two distinct pathways. J Biol Chem, 250, 9083-9089.
Akamatsu, W., Fujihara, H., Mitsuhashi, T., Yano, M., Shibata, S., Hayakawa, Y., Okano, H.J., Sakakibara, S., Takano, H., Takano, T., Takahashi, T., Noda, T. and Okano, H. (2005) The RNA-binding protein HuD regulates neuronal cell identity and maturation. Proc Natl Acad Sci U S A, 102, 4625-4630. Anderson, J.S. and Parker, R.P. (1998) The 3' to 5' degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5' exonucleases of the exosome complex. Embo J, 17, 1497-1506. Anderson, P. and Kedersha, N. (2002) Stressful initiations. J Cell Sci, 115, 3227-3234. Anderson, P. and Kedersha, N. (2002) Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones, 7, 213-221. Asano, K., Krishnamoorthy, T., Phan, L., Pavitt, G.D. and Hinnebusch, A.G. (1999) Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. Embo J, 18, 1673-1688. Bakheet, T., Frevel, M., Williams, B.R., Greer, W. and Khabar, K.S. (2001) ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res, 29, 246-254. Beck, A.R., Medley, Q.G., O'Brien, S., Anderson, P. and Streuli, M. (1996) Structure, tissue distribution and genomic organization of the murine RRM-type RNA binding proteins TIA-1 and TIAR. Nucleic Acids Res, 24, 3829-3835. Beelman, C.A. and Parker, R. (1995) Degradation of mRNA in eukaryotes. Cell, 81, 179-183. Benowitz, L.I. and Routtenberg, A. (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci, 20, 84-91. Blackshear, P.J. (2002) Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem Soc Trans, 30, 945-952. Boeck, R., Tarun, S., Jr., Rieger, M., Deardorff, J.A., Muller-Auer, S. and Sachs, A.B. (1996) The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J Biol Chem, 271, 432-438. Brennan, C.M. and Steitz, J.A. (2001) HuR and mRNA stability. Cell Mol Life Sci, 58, 266-277. Brodeur, G.M., Green, A.A., Hayes, F.A., Williams, K.J., Williams, D.L. and Tsiatis, A.A. (1981) Cytogenetic features of human neuroblastomas and cell lines. Cancer Res, 41, 4678-4686. Brodeur, G.M., Seeger, R.C., Schwab, M., Varmus, H.E. and Bishop, J.M. (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science, 224, 1121-1124. Bullock, T.L., Clarkson, W.D., Kent, H.M. and Stewart, M. (1996) The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2). J Mol Biol, 260, 422-431. Cande, C., Vahsen, N., Metivier, D., Tourriere, H., Chebli, K., Garrido, C., Tazi, J. and Kroemer, G. (2004) Regulation of cytoplasmic stress granules by apoptosis-inducing factor. J Cell Sci, 117, 4461-4468. Caponigro, G. and Parker, R. (1996) Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol Rev, 60, 233-249. Carballo, E., Lai, W.S. and Blackshear, P.J. (2000) Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood, 95, 1891-1899. Chen, C.Y., Chen, T.M. and Shyu, A.B. (1994) Interplay of two functionally and structurally distinct domains of the c-fos AU-rich element specifies its mRNA-destabilizing function. Mol Cell Biol, 14, 416-426. Chen, C.Y., Gherzi, R., Ong, S.E., Chan, E.L., Raijmakers, R., Pruijn, G.J., Stoecklin, G., Moroni, C., Mann, M. and Karin, M. (2001) AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell, 107, 451-464. Chen, C.Y. and Shyu, A.B. (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci, 20, 465-470. Dember, L.M., Kim, N.D., Liu, K.Q. and Anderson, P. (1996) Individual RNA recognition motifs of TIA-1 and TIAR have different RNA binding specificities. J Biol Chem, 271, 2783-2788. Figueroa, A., Cuadrado, A., Fan, J., Atasoy, U., Muscat, G.E., Munoz-Canoves, P., Gorospe, M. and Munoz, A. (2003) Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Mol Cell Biol, 23, 4991-5004. Frevel, M.A., Bakheet, T., Silva, A.M., Hissong, J.G., Khabar, K.S. and Williams, B.R. (2003) p38 Mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol Cell Biol, 23, 425-436. Gallouzi, I.E., Brennan, C.M., Stenberg, M.G., Swanson, M.S., Eversole, A., Maizels, N. and Steitz, J.A. (2000) HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc Natl Acad Sci U S A, 97, 3073-3078. Gallouzi, I.E. and Steitz, J.A. (2001) Delineation of mRNA export pathways by the use of cell-permeable peptides. Science, 294, 1895-1901. Gao, M., Wilusz, C.J., Peltz, S.W. and Wilusz, J. (2001) A novel mRNA-decapping activity in HeLa cytoplasmic extracts is regulated by AU-rich elements. Embo J, 20, 1134-1143. Garrido, C., Schmitt, E., Cande, C., Vahsen, N., Parcellier, A. and Kroemer, G. (2003) HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle, 2, 579-584. Gilks, N., Kedersha, N., Ayodele, M., Shen, L., Stoecklin, G., Dember, L.M. and Anderson, P. (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell, 15, 5383-5398. Guhaniyogi, J. and Brewer, G. (2001) Regulation of mRNA stability in mammalian cells. Gene, 265, 11-23. Gupta, N.K., Woodley, C.L., Chen, Y.C. and Bose, K.K. (1973) Protein synthesis in rabbit reticulocytes. Assays, purification, and properties of different ribosomal factors and their roles in peptide chain initiation. J Biol Chem, 248, 4500-4511. Han, A.P., Yu, C., Lu, L., Fujiwara, Y., Browne, C., Chin, G., Fleming, M., Leboulch, P., Orkin, S.H. and Chen, J.J. (2001) Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. Embo J, 20, 6909-6918. Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M. and Ron, D. (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell, 6, 1099-1108. Harding, H.P. and Ron, D. (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes, 51 Suppl 3, S455-461. Hartmann, A.M., Nayler, O., Schwaiger, F.W., Obermeier, A. and Stamm, S. (1999) The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn). Mol Biol Cell, 10, 3909-3926. Hinnebusch, A.G. (1997) Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. J Biol Chem, 272, 21661-21664. Hinnebusch, A.G. and Natarajan, K. (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell, 1, 22-32. Hoffman, D.W., Query, C.C., Golden, B.L., White, S.W. and Keene, J.D. (1991) RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. Proc Natl Acad Sci U S A, 88, 2495-2499. Hua, Y. and Zhou, J. (2004) Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett, 572, 69-74. Hwu, W.L., Lu, M.Y., Hwa, K.Y., Fan, S.W. and Lee, Y.M. (2004) Molecular chaperones affect GTP cyclohydrolase I mutations in dopa-responsive dystonia. Ann Neurol, 55, 875-878. Kawakami, A., Tian, Q., Duan, X., Streuli, M., Schlossman, S.F. and Anderson, P. (1992) Identification and functional characterization of a TIA-1-related nucleolysin. Proc Natl Acad Sci U S A, 89, 8681-8685. Kawakami, A., Tian, Q., Streuli, M., Poe, M., Edelhoff, S., Disteche, C.M. and Anderson, P. (1994) Intron-exon organization and chromosomal localization of the human TIA-1 gene. J Immunol, 152, 4937-4945. Kedersha, N., Chen, S., Gilks, N., Li, W., Miller, I.J., Stahl, J. and Anderson, P. (2002) Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell, 13, 195-210. Kedersha, N., Cho, M.R., Li, W., Yacono, P.W., Chen, S., Gilks, N., Golan, D.E. and Anderson, P. (2000) Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol, 151, 1257-1268. Kedersha, N.L., Gupta, M., Li, W., Miller, I. and Anderson, P. (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol, 147, 1431-1442. Keene, J.D. (1999) Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl Acad Sci U S A, 96, 5-7. Kent, H.M., Clarkson, W.D., Bullock, T.L. and Stewart, M. (1996) Crystallization and preliminary X-ray diffraction analysis of nuclear transport factor 2. J Struct Biol, 116, 326-329. Kimball, S.R. (2001) Regulation of translation initiation by amino acids in eukaryotic cells. Prog Mol Subcell Biol, 26, 155-184. Kohl, N.E., Kanda, N., Schreck, R.R., Bruns, G., Latt, S.A., Gilbert, F. and Alt, F.W. (1983) Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell, 35, 359-367. Korner, C.G., Wormington, M., Muckenthaler, M., Schneider, S., Dehlin, E. and Wahle, E. (1998) The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. Embo J, 17, 5427-5437. Krishnamoorthy, T., Pavitt, G.D., Zhang, F., Dever, T.E. and Hinnebusch, A.G. (2001) Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol, 21, 5018-5030. Lai, W.S., Carballo, E., Strum, J.R., Kennington, E.A., Phillips, R.S. and Blackshear, P.J. (1999) Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol, 19, 4311-4323. Lal, A., Mazan-Mamczarz, K., Kawai, T., Yang, X., Martindale, J.L. and Gorospe, M. (2004) Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. Embo J, 23, 3092-3102. Larimer, F.W., Hsu, C.L., Maupin, M.K. and Stevens, A. (1992) Characterization of the XRN1 gene encoding a 5'-->3' exoribonuclease: sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells. Gene, 120, 51-57. Lazarova, D.L., Spengler, B.A., Biedler, J.L. and Ross, R.A. (1999) HuD, a neuronal-specific RNA-binding protein, is a putative regulator of N-myc pre-mRNA processing/stability in malignant human neuroblasts. Oncogene, 18, 2703-2710. Lee, G. (2005) Tau and src family tyrosine kinases. Biochim Biophys Acta, 1739, 323-330. Lee, P.W., Wu, S. and Lee, Y.M. (2004) Differential expression of mu-opioid receptor gene in CXBK and B6 mice by Sp1. Mol Pharmacol, 66, 1580-1584. Levine, T.D., Gao, F., King, P.H., Andrews, L.G. and Keene, J.D. (1993) Hel-N1: an autoimmune RNA-binding protein with specificity for 3' uridylate-rich untranslated regions of growth factor mRNAs. Mol Cell Biol, 13, 3494-3504. Levy, N.S., Chung, S., Furneaux, H. and Levy, A.P. (1998) Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem, 273, 6417-6423. Lu, L., Han, A.P. and Chen, J.J. (2001) Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol, 21, 7971-7980. Lykke-Andersen, J. and Wagner, E. (2005) Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev, 19, 351-361. Ma, W.J., Cheng, S., Campbell, C., Wright, A. and Furneaux, H. (1996) Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem, 271, 8144-8151. Mazan-Mamczarz, K., Galban, S., Lopez de Silanes, I., Martindale, J.L., Atasoy, U., Keene, J.D. and Gorospe, M. (2003) RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci U S A, 100, 8354-8359. Mazroui, R., Huot, M.E., Tremblay, S., Filion, C., Labelle, Y. and Khandjian, E.W. (2002) Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression. Hum Mol Genet, 11, 3007-3017. Mitchell, P. and Tollervey, D. (2000) mRNA stability in eukaryotes. Curr Opin Genet Dev, 10, 193-198. Mosser, D.D. and Morimoto, R.I. (2004) Molecular chaperones and the stress of oncogenesis. Oncogene, 23, 2907-2918. Mukherjee, D., Gao, M., O'Connor, J.P., Raijmakers, R., Pruijn, G., Lutz, C.S. and Wilusz, J. (2002) The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. Embo J, 21, 165-174. Mukhopadhyay, D., Houchen, C.W., Kennedy, S., Dieckgraefe, B.K. and Anant, S. (2003) Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol Cell, 11, 113-126. Najib, S., Martin-Romero, C., Gonzalez-Yanes, C. and Sanchez-Margalet, V. (2005) Role of Sam68 as an adaptor protein in signal transduction. Cell Mol Life Sci, 62, 36-43. Nayler, O., Hartmann, A.M. and Stamm, S. (2000) The ER repeat protein YT521-B localizes to a novel subnuclear compartment. J Cell Biol, 150, 949-962. Nover, L., Scharf, K.D. and Neumann, D. (1989) Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol, 9, 1298-1308. Oestreicher, A.B., De Graan, P.N., Gispen, W.H., Verhaagen, J. and Schrama, L.H. (1997) B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol, 53, 627-686. Parker, F., Maurier, F., Delumeau, I., Duchesne, M., Faucher, D., Debussche, L., Dugue, A., Schweighoffer, F. and Tocque, B. (1996) A Ras-GTPase-activating protein SH3-domain-binding protein. Mol Cell Biol, 16, 2561-2569. Patil, C. and Walter, P. (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol, 13, 349-355. Pavitt, G.D., Ramaiah, K.V., Kimball, S.R. and Hinnebusch, A.G. (1998) eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev, 12, 514-526. Peng, S.S., Chen, C.Y. and Shyu, A.B. (1996) Functional characterization of a non-AUUUA AU-rich element from the c-jun proto-oncogene mRNA: evidence for a novel class of AU-rich elements. Mol Cell Biol, 16, 1490-1499. Pestova, T.V. and Hellen, C.U. (2000) The structure and function of initiation factors in eukaryotic protein synthesis. Cell Mol Life Sci, 57, 651-674. Piecyk, M., Wax, S., Beck, A.R., Kedersha, N., Gupta, M., Maritim, B., Chen, S., Gueydan, C., Kruys, V., Streuli, M. and Anderson, P. (2000) TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. Embo J, 19, 4154-4163. Robinow, S. and White, K. (1991) Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development. J Neurobiol, 22, 443-461. Ross, J. (1995) mRNA stability in mammalian cells. Microbiol Rev, 59, 423-450. Schiavi, S.C., Belasco, J.G. and Greenberg, M.E. (1992) Regulation of proto-oncogene mRNA stability. Biochim Biophys Acta, 1114, 95-106. Seeger, R.C., Brodeur, G.M., Sather, H., Dalton, A., Siegel, S.E., Wong, K.Y. and Hammond, D. (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med, 313, 1111-1116. Shaw, G. and Kamen, R. (1986) A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell, 46, 659-667. Steiger, M., Carr-Schmid, A., Schwartz, D.C., Kiledjian, M. and Parker, R. (2003) Analysis of recombinant yeast decapping enzyme. Rna, 9, 231-238. Stoecklin, G., Stubbs, T., Kedersha, N., Wax, S., Rigby, W.F., Blackwell, T.K. and Anderson, P. (2004) MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. Embo J, 23, 1313-1324. Stoilov, P., Rafalska, I. and Stamm, S. (2002) YTH: a new domain in nuclear proteins. Trends Biochem Sci, 27, 495-497. Tang, S.J., Meulemans, D., Vazquez, L., Colaco, N. and Schuman, E. (2001) A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites. Neuron, 32, 463-475. Taylor, G.A., Carballo, E., Lee, D.M., Lai, W.S., Thompson, M.J., Patel, D.D., Schenkman, D.I., Gilkeson, G.S., Broxmeyer, H.E., Haynes, B.F. and Blackshear, P.J. (1996) A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity, 4, 445-454. Taylor, G.A., Thompson, M.J., Lai, W.S. and Blackshear, P.J. (1995) Phosphorylation of tristetraprolin, a potential zinc finger transcription factor, by mitogen stimulation in intact cells and by mitogen-activated protein kinase in vitro. J Biol Chem, 270, 13341-13347. Thompson, C.B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science, 267, 1456-1462. Tian, Q., Streuli, M., Saito, H., Schlossman, S.F. and Anderson, P. (1991) A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell, 67, 629-639. Tourriere, H., Chebli, K., Zekri, L., Courselaud, B., Blanchard, J.M., Bertrand, E. and Tazi, J. (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol, 160, 823-831. Tucker, M., Valencia-Sanchez, M.A., Staples, R.R., Chen, J., Denis, C.L. and Parker, R. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell, 104, 377-386. van Dijk, E., Le Hir, H. and Seraphin, B. (2003) DcpS can act in the 5'-3' mRNA decay pathway in addition to the 3'-5' pathway. Proc Natl Acad Sci U S A, 100, 12081-12086. von der Haar, T., Gross, J.D., Wagner, G. and McCarthy, J.E. (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol, 11, 503-511. Wang, Z., Jiao, X., Carr-Schmid, A. and Kiledjian, M. (2002) The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A, 99, 12663-12668. Williams, B.R. (2001) Signal integration via PKR. Sci STKE, 2001, RE2. Wilson, G.M. and Brewer, G. (1999) Identification and characterization of proteins binding A + U-rich elements. Methods, 17, 74-83. Wilson, G.M. and Brewer, G. (1999) The search for trans-acting factors controlling messenger RNA decay. Prog Nucleic Acid Res Mol Biol, 62, 257-291. Wilusz, C.J., Wormington, M. and Peltz, S.W. (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol, 2, 237-246. Xu, N., Chen, C.Y. and Shyu, A.B. (1997) Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol, 17, 4611-4621. Zhang, W., Wagner, B.J., Ehrenman, K., Schaefer, A.W., DeMaria, C.T., Crater, D., DeHaven, K., Long, L. and Brewer, G. (1993) Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol Cell Biol, 13, 7652-7665. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35382 | - |
| dc.description.abstract | 細胞中透過不同的調節機制以期達到基因表現的控制,而部分調
控機制所影響的層面即在核醣核酸的後轉錄時期。此類調控對於半生 期短、易分解的核醣核酸尤為重要,例如:原癌基因、細胞素等。而 在相關研究中發現,此種易分解的核醣核酸之3 端非轉譯區中具有特 定的排列分子重複出現,其稱之為AU-rich element 簡稱ARE; ARE 透過其鍵結蛋白的調控,而達穩定或加速分解之效。 當細胞遭遇環境變化或藥物刺激,例如熱休克或氧化性藥物影響 時,細胞將啟動防禦機制,一方面調控熱休克性蛋白等之表現另一方 面爲降低細胞損傷而暫時終止一般蛋白的轉錄,將訊息核醣核酸存放 於壓力小體中 (stress granules),待環境危機解除才釋出訊息核醣 核酸回復其原有表現。 在本篇報告中,針對BC1 (Brain Co-regulater 1) 蛋白在細胞 遭遇環境變異前後所擔負的不同功能角色提出實驗探討。初步結果顯 示,BC1 透過其C 端區域而具有與ARE 鍵結的能力,但此鍵結的現象 並未對該核醣核酸的半生期並無顯著影響,而具有增強其轉譯的傾 向。此外,當使細胞受到氧化性藥物刺激時,透過免疫染色法證實 BC1 參與在壓力小體中。未來爲進一步釐清BC1 在形成壓力小體或對 其內核醣核酸所占調控角色,則仍須更進一步實驗。 | zh_TW |
| dc.description.abstract | AU-rich element (ARE) is found in the 3’UTR of many short-lived mRNAs
such as cytokines, and oncogenes. Many RNA-binding proteins that selectively recognize and bind to this ARE sequence are called AU-rich binding protein (AUBP) and can modulate stability and/or translation of ARE-containing mRNAs. Eukaryotic cells shut down protein synthesis and reprogram their translational machinery in response to environmental stress for conserving anabolic energy to repair of the stress-induced damage. In stressed-cells, mRNA is in a dynamic equilibrium between polysomes and stress granules (SGs). SGs are cytoplasmic foci at which stalled translation initiation complexes accumulate. Many RNA-binding protein such as TIA-1,TIAR, and HuR localized at stress granules and it has been proposed the carboxyl terminus of TIA1, the prion-related domain PRD, mediates the formation of SGs. In this study, we investigated the binding ability of BC1 to homo-polynucleotides. Our data demonstrated that BC1 is an RNA-binding protein and possesses strong binding activity toword the distinct sequence. The YTH domain of BC1, a putative RNA-binding domain, harbors ARE-binding activity by using the electrophoretic mobility shift assay (EMSA). RT-PCR and Northern blot analysis showed that BC1 does not alter the stability of its binding target RNAs, but we also prove that BC1 have tendency to promote gene expression at translational level. When cells encounter stress, BC1 is colocalized with TIA-1 and HuR in SGs. We also found that BC1 interacts with TIA-1 under stress in GST-pull down experiment. In deletion analysis, we found that the PRD domain of TIA-1 and the Extensin-like domain of BC1 are responsible for SG formation. Collectively, we report a novel RNA-binding protein BC1 which may exert its role in promoting translation of ARE-containing mRNAs and is involved in formation of SGs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:50:26Z (GMT). No. of bitstreams: 1 ntu-94-R91242012-1.pdf: 1741392 bytes, checksum: faa61a2b89100d0b1de0c0a21ddc52c6 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Contents
English Abstract…………………………………………………..……..4 Chinese Abstract…………………………………………………..…….5 Abbreviation………………………………………………………..……6 1. Introduction 1.1 Turnover of mRNA…………………………………………………………..…....7 1.1.1 Regulating mRNA decay by cis-acting element – AU-rich element………...…..8 1.1.2 AREs mediate effecter mechanisms……………………………………….…...10 1.1.3 AU-rich element binding protein.........................................................................11 1.2 Cells encountering stress……………………………….……………………..….12 1.2.1 Stress sensor…………………………………………………………………....12 1.2.2 Formation of stress granules (SGs)…………………………………………….13 1.2.3 TIA proteins and SGs assembly………………………………………………..15 1.2.4 Other proteins regulating SGs formation………………………………………16 1.2.5 Components of SGs - accumulation of stalled translation initiation complex....18 1.2.6 Components of SGs – specific RNA-binding proteins…………………….......18 1.3 The Brain Co-regulator 1……………………………………………………..…..19 2. Materials and Methods 2.1 Plasmid constructs………………………...………………………………….......21 2.2 Cell culture and transfection…………………...…………………………………22 2.3 In vitro translation and in vitro transcription…………………...………………...22 2.4 RNA binding assay………………………………………...……………………..23 2.5 RNA electrophoretic mobility shift assay (EMSA)…………………………...….23 2.6 RT-PCR………………………………………………………………………...…23 2.7 Northern blot analysis………………………………………………………..…..24 2.8 Luciferase assay……………………………………………………………….....24 2.9 RNA labeling by ethidium bromide……………………………………...............24 2.10 Immunofluorescence analysis…………………………………………………..25 2.11 In situ hybridization……………………………………………………………..26 2.12 GST-pull down assay…………………………………………………................263. Result 3.1 The RNA binding ability of BC1…………………………………………………28 3.2 BC1 binds AU-rich RNA in vitro…………………………………………...……28 3.3 The YTH domain is sufficient for RAN binding…………………………………30 3.4 BC1 seems neither to stabilize nor to degrade RNA ………………………...…..30 3.5 BC1 promotes protein translation in vitro………………………………………..31 3.6 BC1 form cytoplasmic foci under stress………………………………...……….32 3.7 Co-localization of BC1 with TIA-1, the marker of SGs……………………...….33 3.8 BC1, a new marker for SGs………………………………………………………34 3.9 RNA-independent interaction of BC1 and TIA-1…………………………...…...35 3.10 The essential region of BC1 for being recruited into SG……………...………..36 4. Discussion 4.1 RNA-binding ability of BC1……………………………………………………..38 4.2 DNA-binding ability of BC1……………………………………………………..38 4.3 Is BC1 involved in regulating RNA stability?........................................................39 4.4 BC1 selectively promotes the translation…………………………….………..…40 4.5 BC1 as a novel component of stress granules…………………………….……...41 4.6 Different stresses might cause different effects on BC1……...………………….41 4.7 The possible mechanisms of recruiting BC1 into SGs…………..……………….42 4.8 One view in the program of evolution……………………………………………43 5. Reference……………………………………………….……………44 6. Figure…………………………………………………….…………..53 FIG. 1. The in vitro RNA binding ability of BC1. FIG. 2. Sequences of the 3’-UTR AU-rich elements of the various RNA probes used in this study. FIG. 3. AU-rich binding assay by in vitro translated BC1 proteins. FIG. 4. RNA stability was not altered by BC1. FIG. 5. BC1 can promote the ARE-containing reporters expression. FIG. 6. BC1 forms cytosolic foci under oxidative condition. FIG. 7. Overexpression of BC1 is co-localized with TIA-1. FIG. 8. Endogenous BC1 is associated with SGs. FIG. 9. BC1 is a maker of SGs. FIG. 10. BC1 directly interacts with TIA-1FIG. 11. The PRD domain of TIA-1 and the Extensin-like domain of BC1 are essential for SGs formation. FIG. 12. Amino acid 200-300 is efficient for BC1 to associate with SGs 7. Appendix……………………………………………………….…….67 Appendix. 1. Deadenylation-dependent mRNA decay. Appendix. 2. Examples of decay determinants and their interacting proteins regulating the turnover of a few mRANs. Appendix. 3. AU-rich elements and their associated factors Appendix. 4. Model for how the ARE mediates stability and instability. Appendix. 5. Translational initiation in the absence or presence of stress Appendix. 6. The guanine nucleotide exchange activity of eIF2B Appendix. 7. The schema of TIA-1 and TIAR Appendix. 8. Amino acid sequence of BC1. | |
| dc.language.iso | en | |
| dc.subject | RNA穩定性 | zh_TW |
| dc.subject | 壓力小體 | zh_TW |
| dc.subject | ARE | en |
| dc.subject | stress granules | en |
| dc.subject | BC1 | en |
| dc.title | 新奇基因BC1 於RNA 穩定性及壓力小體形成機制之探討 | zh_TW |
| dc.title | RNA-binding protein BC1 in RNA stability and stress granule formation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 譚婉玉,張?仁 | |
| dc.subject.keyword | 壓力小體,RNA穩定性, | zh_TW |
| dc.subject.keyword | BC1,ARE,stress granules, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
