請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35375
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建德(Chien-Ten Chen) | |
dc.contributor.author | Yen-Shuo Su | en |
dc.contributor.author | 蘇彥碩 | zh_TW |
dc.date.accessioned | 2021-06-13T06:50:08Z | - |
dc.date.available | 2005-07-30 | |
dc.date.copyright | 2005-07-30 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-28 | |
dc.identifier.citation | Alia, S. P. P. 1991. Proline accumulation under heavy metal stress. J. Plant Physiol., 138: 554-558.
Ami, L.,Wange, L., Burkheed, L. J., Kerry, L. H., Lindblom S. D., N. T., Marinus P. Elizabeth A. H. and Pilon, S. 2004. Overexpression of ATP sulfurylase in Indian Mustard: Effects on tolerance and accumulation. J. Environ. Qual., 33: 54-60. Arora, S. and Pardha, S. P. 1995. Light-induced enchancement in proline levels in Vigna radiata exposed to environmental stresses. Aust. J. Plant Physiol., 22: 383-386. Aspinall, D. and Paleg, L. G. 1981. Proline accumulation: Physiology and biochemistry of drought resistance in plants. (Eds. L. G. Paleg and D. Aspinall.) Academic Press, Sydney, pp 205-241. Assche, F. V., Cardinaels, C. and Clijsters, H. 1988. Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose-response relations in Phaseolus vulgaris L. treated with zinc and cadmium. Environ. Pollut., 52: 103-115. Bartlett, R. J. and Kimble, J. M. 1976. Behavior of chromium in soils: II. Hexavalent forms. J. Environ. Qual., 5: 379-386 Baszynski, T. M., Krol M., Krupa Z., Ruszkowska M., Wojcieska U. and Wolinska D. 1982. Photosynthetic apparatus of spinach exposed to excess copper. Z. Pflanzenphysiol., 108: 385-395. Baszynski, T. M., Wajda, L., Krol, M., Wolin ska, D., Krupa, Z. and Tukendorf, A. 1980. Photosynthetic activities of cadmium-treated tomato plants. Plant Physiol., 48: 365-370. Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207. Bazzaz, M. B. and Govindjee. 1974. Effects of cadmium nitrate on spectral characteristics and light reactions of choroplasts. Eviron. Sci. Lett., 6:1-12. Bazzaz, F. A., Carlson, R. W. and Rolfe, G. L. 1975. Inhibition of corn and sunflower photosynthesis by lead. Plant Physiol., 34:326-329. Bazzaz, F. A., Rolfe, G. L. and Carlson, R. W. 1974. Effect of Cd on photosynthesis and transpiration of excised leaves of corn and sunflower. Plant Physiol., 32: 373-376. Berrow, M. L. and Reaves, G. A. 1984. Total copper contents of Scottish soils. J. Soil Sci., 35: 583-592. Bettger, W. J. and O’Dekk, B. L. 1981. A critical physiological role of zinc in the structure and function of biomemberanes. Life Sci., 28: 1425-1438 Boggess, S. F., Paleg, L. G. and Aspinall, D. 1975. 1△-pyrroline-5 -carboxylic acid dehydrogenase in barely, a proline-accumulation species. Plant Physiol., 56: 259-262 Bostock, R. M. and Quatrano, R. S. 1992. Regulation of Em gene expression in rice. Plant physiol., 98: 1356-1363 Bull, S. M., Van de Cotte B., Marc, V. M. and Nathalie, V. 2002. Altered levels of proline dehydrogenase cause hypersensitivity to proline and Its analogs in Arabidopsis. Plant Physiol., 128: 73-83. Cary, E. A., Allaway, W. H. and Olson O. E. 1977. Control of chromium concentrations in food plants. Absorption and translocation of chromium by plants. J. Agric. Food Chem., 25: 300-304. Chakravarty, B. and Srivastava, S. 1997. Effects of genotype and explant during in vitro response to cadmium stress and variation in protein and proline contents in linseed. Annals Botany, 79: 487-491. Charest, C. and Phan, C. T. 1990. Cold acclimation of wheat (Triticum aestivum): Properties of enzymes involved in proline metabolism. Plant Physiol. 80: 159-168. Chen, L. M. and Kao, C. H. 1998. Relationship between ammonium accumulation and senescence of detached rice leaves caused by excess copper. Plant Soil, 200: 169-173. Chen, C. T., Chen, L. M., Lin, C. C. and Kao, C. H. 2001. Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci., 160: 283-290. Chou, I. T., Chen, C. T. and Kao, C. H. 1990. Regulation of proline accumulation in detached leaves. Plant Sci. 70: 43-48 Chou, I. T., Chen, C. T. and Kao, C. H. 1991. Characteristics of the induction of the accumulation of proline by abscisic acid and isobutyric acid in detached rice leaves. Plant Cell Physiol. 32: 269-272. Cunningham, S. D., Berti, W. R. and Huang, J. W. 1995. Phytoremediation of contaminated soils. Trends in Biotech. 13: 393-397. Chvapil, M. 1973. New aspects in the biological role of znic: A stabilizer of macromolecules and biological membranes. Life Sci., 13:1041-1049. Clarkson, D. T. and Hanson, J. B. 1980. The mineral nutrtion of higher plants. Plant Physiol., 31: 239-298. Davies, A. G. and Sleep, J. A. 1979. Photosynthesis in some British coastal waters may be inhibited by zinc pollution. Nature, 277: 292-293. De Ronde, J. A., Spreeth, M. H. and Cress, W. A. 2000. Effect of antisense L-Δ-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Regul., 32: 13-26. De Vos, C., Bookum, M. T., Vooijs, R., Schat, H. and De Kok, L.1993. Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper tolerant and sensitive Sliene cucubalus . Plant Physiol. Biotech., 31: 151-158. De Vos C. H. R., Schat H., Vooijs R. and Ernst W. A. O. 1989. Copper induced damage to the permeability barrier in roots of Silene cucubalus. J. Plant Physiol., 135: 164-169. De Vos C. H. R. , Vonk, M. J. and Schat, H. 1992. Glutathione depletion due to copper induced phytochelatin synthesis causes oxidative stressin Silene cucubalus. Plant Physiol., 98: 853-858. Delauney, A. J. and Verma, D. P. S. 1993. Proline biosynthesis and osmoregulation in plants. Plant J., 4: 215-223. Delauney, A. J., Hu, C. A., Kavi Kishor, P. B. and Verma, D. P. S. 1993. Cloning of ornithine δ-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J. Biol. Chem., 268: 18673-18678. Duncan, D. R. and Widholm, J. M. 1987. Proline accumulation and its implication in cold tolerance of regenerable maize callus. Plant Physiol, 83: 703-708 Eberhardt, H. and Wegmann, K. 1989. Effects of abscisic acid and proline on adaptation of. tobacco callus to salinity and osmotic shock. Physiol. Plant., 76: 283–288. Elthon, T. E. S. and Cecil, R. 1981. Submitochondrial Location and Electron Transport Characteristics of Enzymes Involved in Proline Oxidation. Plant Physiol., 67 : 780–784. Fisher, N. S. and Jones, G. J. 1981. Effects of copper and zinc on growth, morphology, and metabolism of Asterionella japonica(Cleve). J. Exp. Mar. biol. Ecol., 51: 37-56 Foster, S. A. and Walters, D. R. 1991. Polyamine concentrations and arginine decarboxylase activity in weat exposed to osmotic stress. Planta, 82: 185-190 Girousse, C., Bournoville, R. and Bonnemain, J. L. 1996. Water deficit-induced changes in concentrations in proline and some other amino acids in the phloem sap of alfalfa. Plant Physiol., 111: 109-113. Gupta, U. C. 1979. Copper in agricultural crops. In (ed. Nriagu, J. O.), Copper in the environment. Part I: Ecological cycling. pp.255-288. John Wiley & Sons, New York. Guerinot, M. L. and D. E. S. 2001. Fortified foods and phytoremediation. two sides of the same coin. Plant Physiol., 125: 164–167. Girouse, C., Bournocille, R. and Bonnemain, J. L. 1996. Water Deficit-induced changes in concentrations in praline and some other amino acids in the problem sap of alfalfa. Plant Physiol., 111: 109-103 Haag-Kerwer, A., Schafer, H. J., Heiss, S., Walter, C. and Rausch, T. 1999. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J. Exp. Bot. 341.1827-1835. Handa S., Handa A. K., Hasegawa P. M. and Bressan R. A. 1986. Proline accumulation and the adaption of cultures plant cells to water stress. Plant Physiol 80: 938-945. Hare, P. D., Cress, W. A. and Van Staden, J. 2001. The effects of exogenous proline and proline analogues on in vitro shoot organogenesis in Arabidopsis. Plant Growth Regul., 34: 203-207. Hare, P. D., Cress, W. A. and Van Staden, J. 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J. Exp. Bot., 50: 413-434. Hellmann H., Dietmar F., Doris R. and Wolf B. F. 2000. Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol., 123: 779-790. Heath, R. L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125: 189-198. Hu, C. A. A., Delauney, A. J. and Verma, D. P. S. 1992. A bifuntional enzyme (Δ- pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci.,89: 9354-9358. Huang,C. Y., Bazzaz, F. A. and Vanderhoef, L. N. 1974. The inhibition of soybean metabolism by cadmium and lead. Plant physiol., 54: 122-124 Iglesias, A. A. and Andreo, C. S. 1984. On the molecular mechanism of maize phosphoenolpyruvate carboxylase activation by thiol compounds. Plant Physiol., 75: 983 -987. Jana, S. and Choudhuri, M. A. 1982. Senescence in submerged aquatic angiosperms: Effects of heavy metals. New Phytol. 90:477-484. Jones, J. B. 1991. Trace elements in soils and plants. In Micronutrients in Agriculture (Eds. J.J. Mortvedt et al.), CRC Press Inc., Boca Raton, Fl, USA. pp. 143-157 Kastori, R., Petrovic, M. and Petrovic, N. 1992. Effect of excess lead, cadmium, copper, and zinc on water relations in transgenic palnts. Plant Physiol., 108: 1387-1394. Kavi Kishor, P. B., Hong, Z., Miao, G. H., Hu C. A. A. and Verma, D. P. S. 1995. Overexpression of 1Δ-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol., 108: 1387-1394. Kefu, Z., Munns, R. and King, R. W. 1991. Abscisic acid levels in NaCl-treared barley, cotton and Saltbush. Aust. J. Plant Physiol., 18: 17-24. Kluwer, A. P. N., Reese, R. N. and Roberts, L. W. 1985. Effects of cadmium on whole cell and mitochondrial respiration in tobacco cell suspension cultures (Nicotiana tabacum L. var. Xanthi). J. Plant Physiol., 120: 123-130. Kuwabara, J. S., Davis, J. A. and Chang, C. C. Y. 1986. Algal growth response to particle-bound orthophosphate and zinc. Limnol. Oceanogr. 31: 503-511. Lamoreaux, R. J. and Chaney, W. R. 1978. The effect of Cadmium on net photosynthesis, transpiration, and dark respirstion of excised silver maple leaves. Plant Physiol., 43: 231-236 Lee, K. C., Cunningham, B. A., Paulsen, G. M., Liang, G. H. and Moore, R. B. 1975. Effects of cadmium on respiration rate and activities of several enzyme in soybean seedlings. Plant Physiol., 36: 4-6. Lee, T. M., Lur, H. S. and Chu, C. 1993. Role of absicisc acid in chilling tolerance of rice (Oryza sativa L.) seedlings endogenous abscisic acid levels. Plant Cell Environ., 16: 481-490. Lin, C. C., Hus, Y. T. and Kao, C. H. 2002. The effect of NaCl on proline accumulation in rice leaves. Plant Growth Regul., 36: 275-285. Luna, C. M., Claudio, A., Gonzalez, C. A. and Trippi. V. S. 1994. Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol., 35: 11-15. Malik, D., Sheoran, I. S. and Shigh, R. 1992. Carbon metabolism in leaves of cadmium treated wheat seedlings. Plant Physiol. Biochem., 30: 223-229. Mattoo, A. K. and Moline, H. E. 1986. Induction of copper ions of ethylene production by Spirodela oligorrhiza: Evidence for a pathway independant of 1-aminocyclopropane-a-carboxylic acid. J. Plant Physiol., 123: 193-202. McGrath, S. P. and Smith, S. 1990. Chromium and nickel. In: Heavy Metals in Soils. (Ed. B.J. Alloway), Chapter 7,Blackie, Glasgow, pp.125-150. Mehta, S. K. and Gaur, J. P. 1999. Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phyto., 143: 253-259. Monnet, F., Vaillant, N., Vernay, P., Coudret, A., Sallanon, H. and Hitmi, A. 2001. Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. J. Plant Physiol., 158: 1137-1144. Morel, F. M. M., Hudson, R. J. M. and Price, N. M. 1992. Limitation of productivity by trace metals in the sea. Limnol. Oceeangor., 36: 1742-1755. Moya, J. L., Ros, R. and Picazo, I., 1993. Influence of cadmium and nickel on growth, net photosynthesis and carbohydratedistribution in rice plants. Photosynth. Res., 36: 75–80. Nanjo T., Kobayashi M., Yoshiba Y., Kakubari Y., Yamaguchi-Shinozaki K. and Shinozaki K. 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett., 461: 205 210. Napoli, C., Lemieux, C. and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 2: 279-289. Noda, H. and Horiguchi, Y. 1971. The significance of zinc as a nutrient for the red alga poryra tenera. Proc. Int. Seaweed Symp. 7: 368-372. Nriagu, J. O. 1979. The global copper cycle. In Copper in the Environment. (Ed. J. O. Nriagu), Part I: Ecological Cycling. John Wiley and sons, New York. pp. 1-17 Orcutt, D. M. and Nilsen, E. T. 2000. Physiology of plants under stresssoil and biotic factors. 2nd edn. John Wiley & Sons Inc, USA. pp. 481-503 Pardossi, A., Vernieri, P. and Tognoni, F. 1992. Involvement of abscisic acid in regulating water status in Phaseolus vulgaris L. during chilling. Plant Physiol., 100: 1243–1250. Peng, Z., Lu, Q. and Verma, D. P. 1996 Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes control proline levels during and after osmotic stress in plants. Mol. Gen. Genet., 253: 334-341. Pesci, P. and Beffagna, N. 1986. Influence of exogenous suppliedpotasium and sodium salts on the ABA-induced prolineaccumulation in barley leaf. Physiologia Plantarum, 67: 123-128. Pesci, P. and Reggiani, R. 1992. The process of abscisic-induced proline accumulation and the levels of polyamines and quaternary ammonium compounds in hydrated barley leaves. Physiol. Plant., 84: 134-139. Phutela, A., Jain, V., Dhawan, K. and Nainawatee, H. S. 2000. Proline metabolism under water stress in the leaves and roots of Brassica juncea cultivars differing in drought tolerance. J. Plant Biochem. Biotechnol., 9: 35-39. Prasad, M. N. V. and Strzatka, K. 2002. Physiology and biochemistry of metal toxicity and tolerance in plant. J. Plant Physiol. 28: 201-227. Raskin, I., Kumar, P. B. A. N., Dushenkov, S. and Salt, D. E. 1994. Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol., 5: 285-290 Rai, V. Vajpayee, P. Singh, S. N. and Mehrotra, S. 2004. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci., 167: 1159–1169 Rayapati, P. J. and Stwart, C. R. 1991. Solubilization of a proline dehydrogenase from maize (Zea mays L.) mitochondria. Plant Physiol., 95: 787-791 Reaves, G. A. and Berrow, M. L. 1984. Total copper contents of Scottish soils. J. Soil Sci., 35: 583-592. Rhodes, D., Handa, S. and Bressan, R. A. 1986. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol., 82: 890-903. Roosens, N. H., Bitar, A. L., Loenders., K., Angenon., G. and Jacobs, M. 2002. Overexpression of ornithine-δ-aminotransferase increases proline biosynthesis and cofers osmotolerance in transgenic plants. Mol. Breeding., 9: 73-80. Ross, D. S., Sjogren, R. E. and Bartlett, R. J. 1981. Behaviour of chromium: IV. Toxicity to microorganisms. J. Environ. Qual., 10: 145-148. Rubinsein, B. 1982. Regulation of H+ excretion Effects of osmotic shock. Plant Physiol., 69: 939-944. Sandmann, G. and Boger, P. 1980. Copper deficiency and toxicity in Scenedesmus. J. Pflanzenphysiol., 98: 53-59. Salomons, W. and U. Forstner, 1984. Metals in the Hydrocycle, Springer-Verlag, New York, p.349 Saradhi, A. and Saradhi, PP 1991 Proline accumulation under heavy metal stress. J.Plant Physiol., 138: 554 558. Schat, H., Sharma, S. S. and Vooijs, R. 1997. Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol. Plant., 101: 477-482. Schurr, U., Gollan, T. and Schulze, E. D. 1992. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap. Plant Cell Environ., 15: 561-567. Sharma, S. S., Schat, H. and Vooijs, R. 1998. In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochem., 49: 1531-1535. Smirnoff, N. and Cumber, Q. J. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochem., 28: 1057–1060. Smith, P. G. and Dale, J. E. 1988. The effects of root cooling and excision treatments on the growth of primary leaves of Phaseolus vulgaris New Phytol., 110: 293-300. Sandmann, G. and Boger, P. 1980. Copper mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiol., 66: 797-800. Skoog, F. 1940. Relationships between znic and auxins in the growth of higher plants. Am. J. Bot., 27: 939-951. Springer-Smith, P. G. and Dale, J. E. 1988. The effects of root cooling and excision treatments on the growth of primary leaves of Phaseolus vulgaris L. New Phytol., 110: 293-300. Songstad, D. D., Duncan, D. R. and Widholm, J. M. 1990. Proline and polyamine involvement in chilling tolerance of maize suspension cultures. J. Exp. Bot., 41: 289-294. Stauber, J. L. and Florence, T. M. 1990. Mechanism of toxicity of zinc to the marine diatom Nitzschia closterium. Mar. Biol., 105: 519-524. Steffens, J. C. 1990. The heavy metal-binding peptides of plants. Annu. Rev. Plant Physiol. Mol. Biol., 41: 553-575. Stewart, C. and Lee J. A. 1974. The rate of proline accumulation in halophytes. Planta, 120: 279-289. Stewart, C. R. and Voetberg, G. 1987. Abscisic acid accumulation is not required for proline accumulation in wilted leaves. Plant Physiol., 83: 747–749. Stiborova, M., Doubravova, M., Brezinova, A. and Friedrich, A. 1986. Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of baryley (Hordeum vulgare L.). Photosynth., 20: 18-425. Stromgren T. 1979. The effect of zinc on the increase in lenghth of five species of intertidal Fucales. J. Exp. Mar. Biol. Ecol., 40: 95-102. Tardieu, F. and Davies, W. J. 1992. Stomatal response to abscisic acid is a function of current plant water status. Plant Physiol., 98: 540-545 Tsui, C. 1948. The role of zinc in auxin synthesis in the tomato plant. Am. J. Bot., 35:172-179. Vartika, R., Poornima, V., Shri, N. S. and Shanta, M. 2004. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol., 103: 771-781. Vajpayee, P., Rai, U. N., Ali, M. B., Tripathi, R. D., Yadav, V. S. and Singh, S. N. 2002. Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent, Bull. Environ. Contam. Toxicol., 67: 246–256 Vajpayee, P., Rai, U. N., Ali, M. B., Tripathi, R. D., Yadav, V., Sinha, S., Pardossi, A., Vernieri, P. and Tognoni, F. 1992. Involvement of abscisic acid in regulating water status in Phaseolus vulgaris L. during chilling. Plant Physiol., 100: 1243-1250. Verbuggen, N., Villarroel, R. and Montagu, M. V. 1993. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol., 103: 771-781. Verkleij, J. A. C. 1993. The effects of heavy metal stress on higher plants and their use as biomonitors. in: Plants as biomonitors: Indicators for heavy metals in the terrestrial environment. (Ed. B. Markert), VCH, New York.Verlag. Berlin. pp. 349. Viarengo, A. 1985. Biochemical effects of trace metals. Mar. Pollut. Bullet., 16: 153-158. Wangeline, A. L., Burkhead, J. L., Hale, K. L., Lindblom, S. D., Terry, N., Pilon, M. and Pilon-Smits, E. A. 2004. Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J. Environ. Qual., 33: 54-60. Weckx, J. E. J. and Clijsters, H. M..M. 1996. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Plant Physiol., 96: 506-512. Williamson, C. L., Slocum, R. D. 1992. Molecular cloning and evidence for osmoregulation of the Δ1-pyrroline-5-carboxylate reductase (proC) gene in pea (Pisum sativum L.). Plant Physiol., 100: 1464-1470. Won, Y. S., Eun, j. S., Enrico, M., Yong, J. L., Yang, Y. Y., Jasinski, M. Cyrille, F., Hwang, I. and Lee, Y. S. 2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotech., 21: 914-919. Wu, F. Y. 1989. Spectroscopic studies of metalloproteins and metalloenzymes. J. Chin. Chem. Sci., 36: 585-599. Wu, J. T., Chang, S. J. and Chou, T. L. 1995. Intracellular proline accumulation in some algae exposed to copper and cadmium. Bot. Bull. Acad. Sin., 36: 89-93. Yong, L. Z., Elizabeth, A. H. Pilon-Smits, Tarun, A. S., Stefan, U. W., Lise, J. and Norman T. 1999. Cadmium tolerance and accumulation in Indian Mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol., 121: 1169-1177. Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol., 38: 1095-1102. Zhang, J. and Zhang, X. 1994. Can early wilting of old leaves account for much of the ABA accumulation in flooed pea plants? J. Exp. Bot., 45: 1335-1342 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35375 | - |
dc.description.abstract | 本論文探討菸草(Nicotiana benthamiana)在不同重金屬逆境影響,脯胺酸代謝的調控機制。脯胺酸合成的榖胺酸(glutamate)路徑與鳥胺酸(ornithine)路徑代謝的四個酵素,pyrroline-5-carboxylate synthetase (P5CS)、pyrroline-5-carboxylate reductase (P5CR)、ornithine aminotransferase (OAT)、proline dehydrogenase (PDH)。本試驗以菸草葉圓片作為材料,進行重金屬銅、鎘、鋅、鉻、離層酸等處理。期能了解重金屬與離層酸單獨對脯胺酸含量,與其對脯胺酸代謝酵素基因表現量的影響。結果顯示,離層酸能誘導菸草葉圓片脯胺酸增加,但離層酸處理所誘導的脯胺酸增加程度僅及乾旱處理的十分之一。以即時聚合酶鏈反應(Real-time Polymerase Chain Reaction)偵測脯胺酸三種脯胺酸生成酵素基因P5CS、P5CR、OAT與一種脯胺酸代謝酵素基因PDH的結果顯示,離層酸處理增加P5CS基因表現約80倍,P5CR、OAT、PDH基因表現僅約兩倍。缺水處理時OAT、P5CS、P5CR的基因表現分別增加1.5、5.7、3.4倍,PDH基因表現則受到抑制,為控制組之2/3。隨著重金屬處理濃度的上升,菸草葉圓片脯胺酸含量先有顯著的上升,然後逐漸下降。銅處理則未見脯胺酸含量上升。低濃度重金屬處理使OAT、P5CS、P5CR、PDH基因表現略為升高。高濃度重金屬處理使脯胺酸含量降低,但OAT、P5CS、P5CR基因表現依然升高,而PDH基因表現則有大量的上升。據此推論,高濃度重金屬處理降低脯胺酸含量,可能與PDH基因表現上升有關。結論,菸草全株於重金屬逆境下脯胺酸的大量累積可能是由於缺水所誘導,且可能透過大量表現P5CS、P5CR基因。當過多重金屬進入植體時,脯胺酸下降,則可能是透過大量表現PDH基因。 | zh_TW |
dc.description.abstract | The aim of this thesis are to investigate the regulation of proline metabolism in Nicotiana benthamiana under heavy metal stresses. Two pathways of proline synthesis: one via glutamate , the other via ornithine were involved in this thesis. The profile of gene expression of four proline metabolism related enzymes, pyrroline-5- carboxylate synthetase (P5CS)、pyrroline-5-carboxylate reductase (P5CR)、ornithine aminotransferase (OAT) and proline dehydrogenase (PDH) were described. The accumulation of proline in plant under heavy metal stress might due to three factors: (1) the damage of root that cause water deficit in the shoot, (2) the increase of abscisic acid level in the root causes proline accumulation as it transport to shoot, (3) heavy metals themselves induce proline accumulated directly. In order to evaluate the impact of each single factor on proline accumulation under heavy metal stress, the leaf discs of Nicotiana benthamiana were floated on the solution of various treatments, such as abscisic acid, heavy metals and proline synthesis precursors. The experiment were conducted in two parts: the physiological assay and the gene expression of proline metabolism related enzymes. Four heavy metal, CuSO4, CdCl2, ZnCl2 and K2Cr2O7 were chosen for heavy metal treatments. The result showed that, abscisic acid could induce proline accumulation in leaf discs, but the level was only one tenth of the level by water deficit treatment. With the analysis of real-time polymerase chain reaction (RT-PCR) on four proline metabolism related enzymes, the result of the abscisic acid treatment showed that P5CS gene expression increased up to 80 fold mean while PDH, OAT、P5CR gene expression were only up regulated about 2 fold. In water deficit treatment, the expression of OAT, P5CS and P5CR gene was up regulated significantly, but PDH gene was reduced. In heavy metal treatment, proline content increase gradually with the increase of heavy metal concentration. Meanwhile, the expression of OAT、P5CS、P5CR and PDH genes were up regulated. As the heavy metal concentration up to 0.5 mM proline content begin to decrease, whereas though the expression of OAT、P5CS、P5CR genes were up regulated, PDH gene up was regulated massively. Thus, it is likely that the decrease of proline content in higher concentration of heavy metal treatment might due to the up regulation of PDH gene expression. In summary, the proline accumulation on the whole plant of Nicotiana benthamiana in response to heavy metal stress mainly due to water deficit and via the up regulation of the expression of P5CS and P5CR genes. Consequently, when the heavy metal contents in plant increased up to certain level, proline content decreases, the inducement of the expression of PDH gene seems to dominate the regulation of proline level in plant. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:50:08Z (GMT). No. of bitstreams: 1 ntu-94-R92623010-1.pdf: 554044 bytes, checksum: f06ef3fa7d98bb612954790768d0e83b (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 摘要----------------------------------------------------- I
Abstract----------------------------------------------- III 目錄----------------------------------------------------- V 圖目錄------------------------------------------------- VII 表目錄--------------------------------------------------- X 前言------------------------------------------------------1 第一章、前人研究------------------------------------------2 一、脯胺酸與逆境的關係------------------------------------2 二、離層酸與逆境的關係----------------------------------- 4 三、脯胺酸累積之機制------------------------------------- 5 四、植物復育法--------------------------------------------7 五、過量銅對植物的生理之影響------------------------------8 六、過量鎘對植物的生理之影響------------------------------9 七、過量鋅對植物的生理之影響-----------------------------10 八、過量鉻對植物的生理之影響-----------------------------11 第二章、材料方法 一、試驗材料---------------------------------------------13 二、逆境與藥劑處理---------------------------------------13 (1)重金屬處理--------------------------------------------13 (2)鳥胺酸(ornithine)處理---------------------------------14 (3)離層酸(abscisic acid)處理-----------------------------14 (4)脯胺酸(proline)處理-----------------------------------15 (5)Polyethylene Glycol(PEG)處理--------------------------15 (6)乾旱、回水處理----------------------------------------15 三、脯胺酸之測定-----------------------------------------16 四、Malondialdehyde(MDA)之測定---------------------------16 五、菸草葉圓片重金屬含量測定-----------------------------17 六、離層酸含量測定---------------------------------------17 七、總量RNA(total RNA)之萃取-----------------------------19 八、去氧核糖核酸分解酶(DNase I)處理----------------------20 九、反轉錄聚合酶反應(reverse transcription polymerase reaction)------------------------------------------- 20 十、P5CR、P5CS、OAT、PDH基因引子對設計------------------ 21 十一、Real-time PCR--------------------------------------23 (1) primer濃度測定---------------------- ----------------23 (2) 標準曲線---------------------------------------------23 (3) 實測-------------------------------------------------30 第三章、結果與討論 一、重金屬對菸草葉圓片脯胺酸的影響-----------------------31 (1) 重金屬對菸草葉圓片脯胺酸的影響-----------------------31 (2) 脯胺酸在重金屬逆境下的功能---------------------------31 (3) 脯胺酸累積對菸草葉圓片氧化逆境的影響---------------- 32 二、離層酸對菸草葉圓片中脯胺酸的影響---------------------45 三、重金屬對菸草葉圓片離層酸的影響-----------------------52 四、重金屬對脯胺酸合成代謝酵素基因表現量的影響---------- 52 五、離層酸對脯胺酸合成代謝酵素基因表現量的影響---------- 60 六、缺水處理對脯胺酸合成代謝酵素基因表現量的影響-------- 61 第四章、綜合討論-----------------------------------------63 第五章、結論---------------------------------------------72 參考文獻-------------------------------------------------73 | |
dc.language.iso | zh-TW | |
dc.title | 逆境下菸草(Nicotiana benthamiana)脯胺酸代謝基因之調控 | zh_TW |
dc.title | The regulation of proline metabolism related genes
in Nicotiana benthamiana under stresses | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱志郁(Chih-Yu Chiu),鍾仁賜(Ren-Shih Chung),吳蕙芬(Whi-Fin Wu),李澤民(Tse-Min Lee) | |
dc.subject.keyword | 脯胺酸,重金屬逆境, | zh_TW |
dc.subject.keyword | pyrroline-5-carboxylate synthetase (P5CS),pyrroline-5-carboxylate reducetase(P5CR),ornithine aminotransferase(OAT),proline dehydrogenase(PDH), | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-28 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 541.06 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。