Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35311
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor梁啟德(Chi-Te Liang)
dc.contributor.authorShih-Kai Linen
dc.contributor.author林士凱zh_TW
dc.date.accessioned2021-06-13T06:47:40Z-
dc.date.available2005-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-28
dc.identifier.citation[1] S.Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano,
and I. Akasaki, J. Appl. Phys. 85, 7682 (1999).
[2] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94,
2779 (2003).
[3] H. Lu, W. J. Schaff, J. Huang, H. Wu, W. Yeo, A. Pharkya, and L. F.
Eastman, Appl. Phys. Lett. 77, 2548 (2000).
[4] H. Lu, W. J. Schaff, J. Huang, H. Wu, G. Koley, and L. F. Eastman,
Appl. Phys. Lett. 79, 1489 (2001).
[5] I. Akasaki, H. Amano, N. Koide, M. Kotaki, and K. Manabe, Physica
B 185, 428 (1993).
[6] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 32,
L8 (1993).
[7] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita,
H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys., Part 2 35,
L74 (1996).
[8] R. Juza and H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938).
[9] R. Juza and A. Rabenau, Z. Anorg. Allg. Chem. 285, 212 (1956).
[10] T. Renner, Z. Anorg. Allg. Chem. 298, 28 (1958).
[11] J. Pastrnak and L. Souckova, Phys. Status Solidi 3, K71 (1963).
[12] G. V. Samsonov, Nitridy Kiev, 1969.
[13] H. J. Hovel and J. J. Cuomo, Appl. Phys. Lett. 20, 71 (1972).
[14] J. W. Trainor and K. Rose, J. Electron. Mater. 3, 821 (1974).
[15] K. Osamura, K. Nakajima, Y. Murakami, H. P. Shingu, and A. Ohtsuki,
Solid State Commun. 11, 617, (1972).
[16] K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys. 46, 3432 (1975).
[17] N. Puychevrier and M. Menoret, Thin Solid Films 36, 141 (1976).
[18] T. Matsuoka, H. Tanaka, T. Sasaki, and A. Katsui, Proceedings of the
Sixteenth International Symposium on GaAs and Related Compounds,
Karuizawa, Japan, September 25-29, 1989 (Institute of Physics, Bristol,
1990), p.141.
[19] A. Wakahara and A. Yoshida, Appl. Phys. Lett. 54, 709 (1989).
[20] A. Wakahara, T. Tsuchiya, and A, Yoshida, J. Cryst. Growth 99, 385
(1990).
[21] T. L. Tansley and R. J. Egan, Phys. Rev. B 45, 10942 (1992).
[22] T. L. Tansley and R. J. Egan, Mater. Res. Soc. Symp. Proc. 242, 395
(1992).
[23] A. Yamamoto, Y. Murakami, K. Koide, M. Adachi, and A. Hashimoto,
Phys. Status Solidi B 228, 5 (2001).
[24] A. Yamamoto, T. Tanaka, K. Koide, and A. Hashimoto, Phys. Status
Solidi A 194, 510 (2002).
[25] C. Stampfl, C. G. Van de Walle, D. Vogel, P. Kruger, and J. Pollmann,
Phys. Rev. B 61, R7846, (2000).
[26] D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber,
Appl. Phys. Lett. 80, 258 (2002).
[27] David J. Griffiths, Introduction to electrodynamics (3rd edn), Prentice
Hall, 1999.
[28] C. Kittel, Introduction to Solid State Physics (7th edn), Wiley, 1996.
[29] Neil W. Arshcroft and N. David Mermin, Solid State Physics, Harcourt
College, 1976.
[30] C.-A. Chang, C.-F. Shi, N. C. Chen, P.-H. Chang, and K.-S. Liu, Phys.
Status Solidi C 1/10, 2559 (2004).
[31] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff,
Phys. Rev. Lett. 92, 036804 (2004).
[32] J. M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1979).
[33] S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar, and L. F.
Eastman, J. Appl. Phys. 83, 826 (1998).
[34] S. N. Mohammad and H. Morkoc, Proc. Quantum Electron. 20, 361,
(1996).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35311-
dc.description.abstract本論文主要是探討多銦氮化銦鎵薄膜InxGa1-xN (x = 1, 0.98, 0.92,
0.8, 0.7) 的電子傳輸性質。我們測量了大溫度範圍下氮化銦鎵的電子
傳輸特性。我們發現在實驗誤差範圍內,樣品的載子濃度在測量的溫
度範圍內幾乎與溫度無關,這是金屬的行為。此外我們利用van der
Pauw 四點量測法計算樣品的電阻率。綜合電阻率與載子濃度的數據
顯示,我們的樣品隨著鎵的成分上升,有一個由金屬到半導體的轉
變。我們也計算了樣品的載子遷移率,載子遷移率在整個量測的溫度
範圍內,隨著鎵成分的升高而降低,這也印證了氮化銦的傳輸特性優
於氮化鎵。由於金屬電阻率在低溫下遵守Bloch T5 定理,對於銦濃
度大於等於92% 的樣品,我們檢查了它們的電阻率與Bloch T5 定
理的符合程度。分析的結果顯示高銦成分的樣品的電阻率非常符合
Bloch T5 定理,從而進一步的支持了高銦濃度的氮化銦鎵薄膜傳輸特
性與金屬十分類似。
zh_TW
dc.description.abstractThis thesis focuses on electron transport properties in InxGa1−xN (x =1,
0.98, 0.92, 0.8, 0.7) thin films. We have performed transport measurements
on InxGa1−xN thin films over a wide temperature range. We observed that
within experimental error, the carrier densities are temperature independent.
Besides, the resistivities, combined with the carrier densities, show
a tendency of transition from metal to semiconductor with increasing Ga
composition. The calculated mobility shows that for metallic like samples
(InxGa1−xN with x ≥0.92), the dominant scattering mechanism is the imperfection
scattering over the whole temperature range. We also showed
that Bloch T5 curves fit very well the resistivities of samples InxGa1−xN
with x =1, 0.98, 0.92, once again supporting that very high In composition
InxGa1−xN films can be considered as degenerate electron systems in which
the Fermi level is much higher than conduction-band bottom over the whole
measurement range.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:47:40Z (GMT). No. of bitstreams: 1
ntu-94-R92222049-1.pdf: 1710478 bytes, checksum: 9f9b555b81d69e2dccb11aa32cfd2405 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents1 Introduction 1
2 Theoretical background 4
2.1 Classical Hall effect . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Van der Pauwmethod . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Electrical transport properties . . . . . . . . . . . . . . . . . . 10
2.3.1 Ohm’s law and electrical conductivity . . . . . . . . . . 10
2.3.2 Relaxation time approximation . . . . . . . . . . . . . 12
2.3.3 The temperature-dependent electron resistivity of metals 14
3 Sample fabrication and Hall measurements 20
3.1 Sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 Metal-organic vapor phase epitaxy . . . . . . . . . . . 20
3.1.2 Sample structure . . . . . . . . . . . . . . . . . . . . . 21
3.2 Hall measurements . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Ohmic contacts . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Elimination of background voltage . . . . . . . . . . . 25
4 Electrical properties of In-rich InxGa1−xN films 27
4.1 Deviation of the Rxy fromzero at zero magnetic field . . . . . 27
4.2 Temperature dependence of carrier density, resistivity and mobility
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Curve fitting of Bloch T5 law . . . . . . . . . . . . . . . . . . 38
5 Conclusions 42
Bibliography 44
dc.language.isoen
dc.subject氮化銦鎵zh_TW
dc.subjectInGaNen
dc.title多銦氮化銦鎵薄膜之電子傳輸特性zh_TW
dc.titleElectron transport in In-rich InxGa1-xN filmsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.coadvisor張本秀(Pen-Hsiu Chang)
dc.contributor.oralexamcommittee陳永芳(Yung-Fang Chen)
dc.subject.keyword氮化銦鎵,zh_TW
dc.subject.keywordInGaN,en
dc.relation.page47
dc.rights.note有償授權
dc.date.accepted2005-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
1.67 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved