請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35279
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 胡植慶 | |
dc.contributor.author | Li-Wei Cheng | en |
dc.contributor.author | 鄭力瑋 | zh_TW |
dc.date.accessioned | 2021-06-13T06:46:30Z | - |
dc.date.available | 2005-07-30 | |
dc.date.copyright | 2005-07-30 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-29 | |
dc.identifier.citation | References
Angelier, J., H. T. Chu, J. C. Lee, Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274, 117-143, 1997 Angelier, J., H.-T. Chu, J.-C. Lee, and J.-C. Hu, Active faulting and earthquake hazard, The case study of continuous monitoring of the of the Chihshang Fault. Taiwan. J. Geodyn., 29, 151-185, 2000 Barrier, E., J. Angelier, H.-T., Chu, L.-S., Teng, Tectonic analysis of compressional structure in an active collision zone: the deformation of the Pinanshan Conglomerates, eastern Taiwan. Proceeding Geological Society of China, 25, 123-138, 1982 Bro, R., and S. de Jong, A fast Non-Negativity-Constrained Least Squares Algorithm. J. Chemom., 11, 393-401, 1997 Cervelli, P., M. Murray, P. Segall, Y. Aoki, and T. Kato, Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan. J. Geophys. Res., 106, 11217-11237, 2001 Chang, C. P., J. Angelier, and C. Y. Huang, Origin and evolution of a melange: the active plate boundary and suture zone of the Longitudianl Valley, Taiwan. Tectonics, 325, 43-62, 2000 Chen, H.-Y., S.-B., Yu, L.-C., Kuo and C.-C. Liu, Coseismic and postseismic displacement of the 10 December 2003 (Mw 6.5) Chengkung earthquake, eastern Taiwan. Earth Planets Space (submitted), 2005 Chinnery, M. A., The deformation of the ground around surface faults. Bull. Seism. Am., 51, 355-372, 1961 Comninou, M., J. Dundurs, The angular dislocation in a half space. J. Elasticity, 5, 203-216, 1975 Deng, J., and L. R. Sykes, Evolution of the stress field in southern California and triggering of moderate-size earthquakes: A 200-year perspective, J. Geophys. Res., 102, 9859-9886, 1997 Desbrun, M., M. Meyer, P. Schroder, and A. H. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow. SIGGRAPH, 99, 317-324, 1999 Du, Y., A. Adyin, and P. Segall, Comparison of various inversion techniques as applied to the determination of a geophysical deformation model for the 1983 Borah Peak earthquake. Bull. Seism. Am., 1992 Erickson, L. L., A three-dimensional dislocation program with applications to faulting in the earth. M. S. Thesis, Stanford University, Stanford, California, 167pp, 1986 Feigl, K., A. Sergent, and D. Jacq, Estimation of an earthquake focal mechanism from a satellite radar interferogram – application to December 4, 1992 Landers aftershock. Geophys. Res. Lett., 22, 1037-1040, 1995 Freymueller, J., N. King, and P. Segall, The coseismic slip distribution of Landers earthquake. Bull. Seism. Am., 84, 646-659, 1994 Hardebeck, J. L., J. J. Nazareth, and E. Hauksson, The static stress change triggering model: Constraints from two southern California aftershocks sequences. J. Geophys. Res., 103, 24,427-24,437, 1998 Harris, R. A., Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res., 103, B10, 24,347-24,358, 1998 Harris, R. A., R. W. Simpson, and P. A. Reasenberg, Influence of static stress changes on earthquake locations in southern California. Nature, 375, 221-224, 1995 Harris, R. A., and P. Seall, Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas Fault, J. Geophys. Res., 92, 7945-7962, 1987 Hsu, J.-Y., N. Bechor, P. Segall, S.-B Yu, L.-C. Kuo, Rapid afterslip following the 1999 Chi-Chi, Taiwan earthquake. Geophys. Res. Lett., 29, 16, 10.1029/2002GL014967, 2002 Hugentobler U., S. Schear and P. Fridez, Bernese GPS software version 4.2, Astro. Inst. Univ. of Berne, Berne, Switerland, 515 pp. 2001 Jeyakumaran, M., J. W. Rudnicki, and L. M. Keer, Modeling slip zones with triangular dislocation elements. Bull. Seism. Am., 82,, 5, 2153-2169, 1992 Johnson, K. M., Y. J. Hsu, P. Segall, and S. B. Yu, Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan earthquake imaged from inversion of GPS data. Geophys. Res. Lett., 29, 2285-2288, 2001 Johnson, k., P. Segall, Imaging the ramp-decollement geometry of the Chelungpu fault using coseismic GPS displacements from the 1999 Chi-Chi, Taiwan earthquake. Tectonics, 378, 123-139, 2004 Jonsson, S., H. Zebker, P. Segall, and F. Amelung, Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seism. Am., 92, 1377-1389, 2002 King, G. C., and M. Cocco, Fault interaction by elastic stress changes: New clues from earthquake sequences. Adv. Geophy., 44, 1-36, 2000 King, G. C. P., R. S. Stein, J. Lin, Static stress changes and the triggering of earthquakes. Bull. Seism. Am., 84, 3, 935-953, 1994 Kuochen, H., Y.-M. Wu, C.-H., Chang, J.-C. Hu and W.-S. Chen, Relocation of eastern Taiwan earthquakes and tectonic implications. TAO, 15, 647-666, 2004 Kuochen, H, Y.-M. Wu, Y.-G. Chen, R.-Y. Chen, Mw 6.8 Chengkung earthquake and its associated seismogenic structures. J. Asian Earth Sci. ( Accepted), 2005 Lee, J.-C., J. Angelier, H.-T. Chu, S.-B. Yu, and J.-C. Hu, Plate-boundary strain partitioning along the sinistral collision suture of the Philippine and Eurasian plates: Analysis of geodetic data and geological observation in southeastern Taiwan. Tectonics, 17, 859–871, 1998 Lee, J.-C., J. Angelier, H.-T. Chu, J.-C. Hu, F.-S. Jeng, and R.-J. Rau, Active fault creep variations at Chihshang, Taiwan, revealed by creepmeter monitoring, 1998-2001. J. Geophys. Res., 108(B11), 2528, doi:10.1029/2003JB002349, 2003 Lee, J.-C., H.-T., Chu, J. Angelier, J.-C. Hu, and H.-Y. Chen, Quantitative analysis of co-seismic surface faulting of the 2003, Mw=6.5 Chengkung earthquake at Chihshang, eastern Taiwan. Tectonophysics (submitted), 2005 Legrand, D. and B. Delouis, Determination of the fault plane using a single near-field seismic station with a finite-dimension source model. Geophys. J. Int., 138, 801-808, 1999 Li, V. C., and J. R. Rice, Crustal deformation in great California earthquake cycles. J. Geophys. Res., 92, 11533-11551, 1987 Lin, J., and R. S. Stein, Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J. Geophys. Res., 109, B02303, doi:10.1029/2003JB002607, 2004 Lin, J., and R. S. Stein, Coseismic folding, earthquake recurrence, and the 1987 source mechanism at Whitier Narrows, Los Angeles Basin, California. J. Geophys. Res., 94, 9614-9632, 1989 Ishii, H. and A. Takagi, Theoretical study on the crustal movements. Part Ⅰ. The influence of surface topography (two-dimensional SH-torque source), Sci. Rep. Tohoku Univ., Serv. 5, Geophys., 19, 77-94, 1967a Ishii, H. and A, Takagi, Theoretical study on the crustal movements. Part Ⅰ. The influence of horizontal discontinuity, Sci. Rep. Tohoku Univ., Serv. 5, Geophys., 19, 95-106, 1967b Maerten, F., P. Resor, D. Pollard, and L. Maerten, Inverting for slip on three-dimension fault surfaces using angular dislocations. Bull. Seism. Am. (submitted), 2005 Official BATS website at http://bats.earth.sinica.edu.tw Okada, Y., Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Am., 75, 4, 1135-1154, 1985 Rundle, J. B., and D. D. Jackson. A viscoelastic relaxation model for postseismic deformation from the San Francisco earthquake of 1906, Pageoph, 115, 401-411, 1977 Sato, R., Crustal deformation due to dislocation in a multi-layered medium. J. Phys. Earth, 19, 31-46, 1971 Sato, R., and M. Matsu’ura, Strains and tilts on the surface of a semi-infinite medium. J. Phys. Earth, 22, 213-221, 1974 Savage, J. C., Equivalent strike-slip earthquake cycles in half-space and lithosphere earth models. J. Geophys. Res., 95, 4873-4879, 1990 Savage, J. C., and W. H. Prescott, Asthenosphere readjustment and earthquake cycle. J. Geophys. Res., 83, 3369-3376, 1978 Segall, P., and R. Harris, Slip deficit on the San Andreas fault at Parkfield, California, as revealed by inversion of geodetic data. Science, 23, 1409-1413, 1986 Singh, S. J., Static deformation of a multilayered half-space by internal sources. J. Geophys. Res., 75, 3257-3263, 1970 Steketee, J. A., Some geophysical applications of the elasticity theory of dislocations. Can. J. Phys., 36, 1168-1198, 1958 Stein, R. S., G. C. P. King, and J. Lin, Change in failure stress on the southern San Andreas fault system caused by the 1992 Magnitude = 7.4 Landers earthquake. Science, 258, 1328-1332, 1992 Stein, R. S., G. C. P. King, and J. Lin, Stress triggering of the 1994 M = 6.7 Northridge, California, earthquake by its predecessors. Science, 265, 1432-1435, 1994 Takemoto, S., Effects of local inhomogeneities on tidal strain measurements. Bull. Disas. Prev. Res. Inst., Kyoto Univ., 17, 1-20 Thomas, A.L., Ploy3D: A three-dimensional, polygonal element, displacement discontinuity boundary element computer program with application to fractures, faults and cavities in the Earth’s crust. M.S. Thesis, Stanford University, Stanford, CA, pp 97., 1993 Toda, S., and R. S. Stein, Response of San Andreas fault to the 1983 Coalinga-Nunez earthquakes: An application of interaction-based probabilities for Parkfield. J. Geophys. Res., 107, B6, 2126, 10.1029/2001JB000172, 2002 Tse, S. T., and J. R. Rice, Crustal earthquake instability in relation to the depth variation of friction slip properties. J. Geophys. Res., 91(B9), 9452-9472, 1986 Wang, J. C., C. F. Shieh,and T. M. Chang, Static stress changes as a triggering mechanism of a shallow earthquake: Case study of the 1999 Chi-Chi (Taiwan) earthquake, Phys. Earth Planet. Inter., 135, 17-25, 2003 Wright, T., B. Parsons, J. Jacks, M. Haynes, E. Fielding, P. England, P. Clarke, Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modeling. Earth Planet Sci. Lett., 172, 23-37, 1999 Wu, Y. M., Y. G. Chen, J. C., Hu, T. C., Shin, C. H., Chang, H. Kuochen, C.-F. Wu, C.-S., Hou, and T.-L. Teng, Coseismic vs. interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthaquake in eastern Taiwan. Geophys. Res. Lett. (submitted). Yoffe, E., The angular dislocation, Philosophical Magazine, 5, 161-175, 1960 Yu, S. B., and C. C. Liu, Fault creep on the segment of the Longitudinal Valley Fault, Eastern Taiwan. Proceedings of the Geological Society of China 32 (3), 209-231, 1989 Yu, S. B., H. Y. Chen, and L.-C. Kuo, Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59, 1997 Yu, S. B., L. C. Kuo, Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan, Tectonophysics, 333, 199-214, 2001. Yu, S. B., D. D. Jackson, G. K. Yu, and C. C. Liu, Dislocation model for crustal deformation in the Longitudinal Valley area, eastern Taiwan. Tectonophysics, 183, 97-109, 1990 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35279 | - |
dc.description.abstract | 花東縱谷為歐亞大陸板塊與菲律賓海板塊碰撞交界,為地質構造活躍、地震頻仍之處,本研究中的池上斷層即為南段花東縱谷與海岸山脈的邊界,跨越池上斷層每年約有1.8到3.5公分的變形量 ( Yu et al.,2001 ),大致以地震或潛移的方式釋放。
2003年12月10日芮氏規模6.5的成功地震,由地震重定位及餘震分佈的情形,我們可以得知成功地震為池上斷層錯動所造成,並造成地表上數公分至數十公分的地表位移。由於以往對於池上斷層地表下的實際幾何位態,並不是十分清楚,本研究希望藉由地表上GPS觀測系統所量測到的同震位移,配合彈性半無限空間錯位模型,來推求池上斷層最佳的斷層幾何形貌,以及模擬成功地震在池上斷層面上滑移量的分佈情形;當斷層位態與滑移量分佈為已知的情況之下,可以藉由庫倫應力轉移模型,看出主震對於斷層週遭應力影響的情形,評估成功地震對於附近已存在的破裂面是否有觸發可能性,藉以了解斷層的活動性及未來可能發生較大地震的區域。 彈性半無限空間錯位模型配合地表位移資料過去廣泛應用於尋找斷層面的幾何位態,以及斷層面上可能的滑移量分布 ( Okada, 1985; Johnson et al., 2001 ),來了解斷層的行為和地震之間的關係。 | zh_TW |
dc.description.abstract | The Mw=6.8 Chengkung Earthquake is almost a pure thrust event which is occurred on December 10th, 2003 in the Costal Range of eastern Taiwan. This earthquake is believed to rupture the NNE-striking Chihshang Fault in the Longitudinal Valley. Based on the relocation of aftershock sequences, the main shock mainly dislocates the east dipping high-angle Chihshang Fault plane. The maximum permanent vertical displacement shown by GPS data in the hanging wall side is about 30 cm. Remarkably, not only all the stations on the hanging wall of the Chihshang Fault were uplifted in this earthquake event, but also the stations on the Longitudinal Valley were still raised till the foothills of the Central Range. We employ GPS data around the Chihshang Fault by using the elastic half-space dislocation model to figure out the fault plane geometry and the distribution of co-seismic dislocations. I construct the Chihshang Fault, consisting of 6 segments, by the delineation of the aftershock distribution. The segments all strike N˚18E, because of the fault trace on the surface, and the segments of Chihshang fault, from top to bottom, are 60˚, 65˚, 60˚, 40˚, 20˚, 10˚, respectively, revealing a listric fault type. The dislocation model in term of GPS data reveals that the maximal dislocation is about 1 m along dip-slip and the dislocations gradually decrease to 10 cm near the surface. The average slip is 0.52 m along the fault surface, which yields a scalar moment of 2.0 × 1026 dyne-cm. These results are similar to that of the Harvard CMT, indicating a scalar moment of 2.0 × 1026 dyne-cm. The result shows the uplift of the foot wall highly affects the root mean square of vertical component.
From the post-seismic displacements recorded by GPS 3 months after the main shock, the hanging wall of Chihshang fault still uplifted during this period. Contrast to the hanging wall, the footwall moved downward. Under the assumption that the postseismic deformation was due to the afterslip on the same fault, the dislocation model is also applied to investigate the postseismic afterslip distribution. The result shows the maximum afterslip is up to 15 cm and most slip are distributed to upper part of the fault. This phenomenon probably implies that coseismic dislocation near the fault trace may be partially locked or damped, thus the strain cumulated and caused the uplift of the footwall. After the mainshock, the strain released near the surface causes aseismic creeping and significant post-slip. To inspect the stress field after the Chengkeng earthquake, Coulomb failure criterion is employed to investigate the occurrence of aftershocks and future rupturing, based on the coseismic dislocation and fault geometry. Coulomb stress change, on specified orientation and optimally orientated faults, both reveal that the footwall should experience a significant stress increase up to 2 bars, a candidate for the occurrence of aftershocks. The comparison between the Coulomb stress change pattern and aftershock distribution shows there should be a pre-existing geological structure beneath the Longitudinal Valley and was triggered after the Chengkung earthquake. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:46:30Z (GMT). No. of bitstreams: 1 ntu-94-R92224106-1.pdf: 4003717 bytes, checksum: 4b8b9da213f3ae03006da506c78ad7fd (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | Catalog
Chaper 1. Introduction---------------------------------------------------------------------------------- 2 1.1 Purpose---------------------------------------------------------------------------- 2 1.2 Tectonic and geological settings----------------------------------------------- 4 1.3 Recent movement of the Chihshang Fault------------------------------------ 4 Chapter 2. Seismotectonic and Crustal Deformation----------------------------------------------- 8 2.1 Chengkung earthquake---------------------------------------------------------- 8 2.2 Surface coseismic deformation recorded by GPS--------------------------- 13 2.3 Postseismic surface deformation recorded by GPS------------------------- 19 Chapter 3. Elastic Half-space Dislocation Modeling of the Chengkung Earthquake-------- 24 3.1 Dislocation model---------------------------------------------------------------- 24 3.2 Poly3D (An Elastic half-space forward model software)------------------- 24 3.3 Poly3Dinv (Inversion model software)---------------------------------------- 28 3.4 Fault plane construction---------------------------------------------------------- 32 3.5 Model results---------------------------------------------------------------------- 37 3.6 Postseismic modeling------------------------------------------------------------ 41 Chapter 4. Coulomb Stress Transfer of the Chengkung Earthquake---------------------------- 45 4.1 Coulomb failure criterion-------------------------------------------------------- 45 4.2 Coulomb stress transfer applied to the Chengkung earthquake------------ 51 Chapter 5. Discussion-------------------------------------------------------------------------------------- 60 5.1 Elastic half-space model--------------------------------------------------------- 60 5.2 Coulomb stress transfer---------------------------------------------------------- 65 Chapter 6. Conclusion------------------------------------------------------------------------------------- 68 References------------------------------------------------------------------------------------- 69 | |
dc.language.iso | en | |
dc.title | 利用同震級震後GPS位移探討2003年12月成功地震的同震震後錯移模型以及其庫倫應力轉移情形 | zh_TW |
dc.title | Inversion of Co-seismic and Post-seismic Deformation, revealed by GPS data, and Coulomb Stress Changes of the December 2003 Chengkung Earthquake in Eastern Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 李建成 | |
dc.contributor.oralexamcommittee | 陳予高,盧佳遇,朱傚祖 | |
dc.subject.keyword | 錯移模型,成功地震,庫倫應力, | zh_TW |
dc.subject.keyword | dislocation model,Chengkung eartquake,Coulomb stress transfer, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-29 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 3.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。