請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35260
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃青真(Ching-Jang Huang) | |
dc.contributor.author | Wan-Yu Hsieh | en |
dc.contributor.author | 謝婉郁 | zh_TW |
dc.date.accessioned | 2021-06-13T06:45:50Z | - |
dc.date.available | 2006-07-30 | |
dc.date.copyright | 2005-07-30 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-29 | |
dc.identifier.citation | 趙哲毅 (2003) 苦瓜活化過氧化體增殖劑活化受器及改變脂質代謝相關基因之表現。台大微生物與生化學研究所博士論文。
莊佳穎 (2004) 山苦瓜活化過氧化體增值活化受器 PPARs 之成分分離與鑑定。台大微生物與生化學研究所碩士論文。 Ahmed, I., Lakhani, M.S., Gillett, M., John, A. and Raza, H. (2001) Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momoridica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract. 51:155-61. Ali, L., Khan, A. K., Mamun, M. I., Mosihuzzaman, M., Nahar, N., Nur-e-Alam, M. and Rokeya, B. (1992) Studies on hypoglycemic effects of fruit pulp, seed, and whole plant of Momordica charantia on normal and diabetic model rats. Planta Med. 59(5):408-12. Anila, L. and Vijayalakshmi, N. R. (2000) Beneficial effects of flavonoids from Sesamum indicum, Emblica officinalis and Momordica charantia. Phytother Res. 14(8):592-5. Axen, K. V., Dikeakos, A. and Sclafani, A. (2003) High dietary fat promotes syndrome X in nonobese rats. J Nutr. 133, 2244-2249. Bailey, C. J., Day, C., Turner, S. L. and Leatherdale, B. A. (1985) Cerasee, a traditional treatment for diabetes. Studies in normal and streptozocin diabetic mice. Diabet Res. 2:81-4. Chao, C. Y. and Huang, C. J. (2003) Bitter gourd (Momordica charantia) extract activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells. J Biomed Sci. 10:782-91. Chen, Q., Chan, L. L. and Li, E. T. (2003) Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr. 133(4):1088-93. Collins, S., Martin, T. L., Surwit, R. S. and Robidoux, J. (2004) Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav. 81(2):243-8. Costet, P., Legendre, C., More, J., Edgar, A., Galtier, P. and Pineau, T. (1998) Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem. 273(45):29577-85. Desvergne, B. and Wahli, W. (1999) Peroxisome proliferator-activated receptor : nuclear control of metabolism. Endocr Rev. 20:649-688. Dhar, P., Ghosh, S. and Bhattacharyya, D. K. (1999) Dietary effects of conjugated octadecatrienoic fatty acid (9 cis, 11 trans, 13 trans) levels on blood lipids and nonenzymatic in vitro lipid peroxidation in rats. Lipids 34(2):109-14. Ferre, P. (2004) The biology of peroxisome proliferator–activated receptors relationship with lipid metabolism and insulin sensitivity. Diabetes 53 (Suppl.1):S43–S50. Flatmark, T., Nilsson, A., Kvannes, J., Eikhom, T. S., Fukami, M. H., Kryvi, H., and Christiansen, E. N. (1988) On the mechanism of induction of the enzyme systems for peroxisomal beta-oxidation of fatty acids in rat liver by diets rich in partially hydrogenated fish oil. Biochim Biophys Acta. 962:122-130. Fu, J., Gaetani, S., Oveisi, F., Verme, J., Serrano, A., Rodriguez, F., Rosengarth, A., Luecke, H., Di Giacomo, B., Tarzia, G.. and Piomelli, D. (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90-3. Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., Bihain, B. E. and Lodish, H. F. (2001) Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci. 98(4):2005-10. Guerre-Millo, M., Gervois, P., Raspe, E., Madsen, L., Poulain, P., Derudas, B., Herbert, J. M., Winegar, D. A., Willson, T. M., Fruchart, J. C., Berge, R. K. and Staels, B. (2000) Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem. 275(22):16638-42. Gustafson, L. A., Kuipers, F., Wiegman, C., Sauerwein, H. P., Romijn, J. A. and Meijer, A. J. (2002) J Hepatol. 37:425-31. Hegarty, B. D., Furler, S. M., Oakes, N. D., Kraegen, E. W. and Cooney, G. J. (2004) Peroxisome Proliferator-activated receptor (PPAR) activation induces tissue-specific effects on fatty acid uptake and metabolism in vivo- a study using the novel PPARα/γ agonist tesaglitazar. Endocrinology 145: 3158-3164. Hotta, K., Funahashui, T. and Arita, Y. Plasma concentration of a novel adiposespecific protein, adiponectin, in type 2 diabetic patients. (2000) Arterioscler Thromb Vasc Biol. 20:1595-9. Iossa, S., Mollica, M. P., Lionetti, L., Barletta, A. and Liverini, G. (1997a) Effect of a high-fat diet on energy balance and thermic effect of food in hypothyroid rats. Eur J Endocrinol. 136:309-315. Iossa, S., Mollica, M. P., Lionetti, L., Barletta, A. and Liverini, G. (1997b) Energy balance and liver respiratory activity in rats fed on an energy-dense diet. Br J Nutr. 77:99-105. Isomaa, B. (2003) A major health hazard: the metabolic syndrome. Life Sci. 73, 2395- 2411. Iwaki, M., Matsuda, M., Maeda, N., Funahashi, T., Matsuzawa, Y., Makishima, M. and Shimomura, I. (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52(7):1655-63. Jayasooriya, A. P., Sakono, M., Yukizaki, C., Kawano, M., Yamamoto, K. and Fukuda, N. (2000) Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets. J Ethnopharmacol. 72(1-2):331-6. Khanna, P., Jain, S. C., Panagariya, A. and Dixit, V. P. (1981) Hypoglycemic activity of polypeptide-p from a plant source. J Nat Prod. 44(6):648-55. Koba, K., Akahoshi, A., Yamasaki, M., Tanaka, K., Yamada, K., Iwata, T., Kamegai, T., Tsutsumi, K. and Sugano, M. (2002) Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid levels in rats. Lipids 37(6):631. Lazarow, P. B. and De Duve, C. (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes;enhancement by clofibrate, a hypolipidemic drug. Proc.Natl.Acad.Sci.U.S.A 73: 2043-6. Lee-Huang, S., Huang, P. L., Chen, H. C., Huang, P. L., Bourinbaiar, A., Huang, H. I. and Kung, H. F. (1995) Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene. 161(2):151-6. Lemberger, T., Braissant, O., Juge-Aubry, C., Keller, H., Saladin, R., Staels, B., Auwerx , J., Burger, A. G., Meier, C. A. and Wahli, W. (1996) PPAR tissue distribution and interactions with other hormone-signaling pathways. Ann N Y Acad Sci. 804:231-51. Mahomoodally, M. F., Fakim, A. G. and Subratty, A. H. (2004) Momordica charantia extracts inhibit uptake of monosaccharide and amino acid across rat everted gut sacs in-vitro. Biol Pharm Bull. 27(2):216-8. Mancini, F. P., Lanni, A., Sabatino, L., Moreno, M., Giannino, A., Contaldo, F., Colantuoni, V. and Goglia, F. (2001) Fenofibrate prevents and reduces body weight gain and adiposity in diet-induced obese rats. FEBS Lett. 491: 154-8. Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M. and Chambon, P. (1995) The nuclear receptor superfamily: the second decade. Cell 83: 835-9. Matsuda, H., Li, Y., Murakami, T., Matsumura, N., Yamahara, J. and Yoshikawa, M. (1998) Antidiabetic principles of natural medicines. III. Structure-related inhibitory activity and action mode of oleanolic acid glycosides on hypoglycemic activity. Chem Pharm Bull (Tokyo). 46(9):1399-403. Miura, T., Itoh, C., Iwamoto, N., Kato, M., Kawai, M., Park, S. R. and Suzuki, I. (2001) Hypoglycemic activity of the fruit of the Momordica charantia in type 2 diabetic mice. J Nutr Sci Vitaminol (Tokyo). (5):340-4. McCarty, M. F. (2004) Does bitter melon contain an activator of AMP-activated kinase? Med Hypotheses. 63(2):340-3. Mukherjee, R., Jow, L., Noonan, D. and McDonnell, D. P. (1994) Human and rat peroxisome proliferator activated receptors (PPARs) demonstrate similar tissue distribution but different responsiveness to PPAR activators J Steroid Biochem Mol Biol. 51: 157-166. Neat, C. E., Thomassen, M. S., and Osmundsen, H. (1980) Induction of peroxisomal beta-oxidation in rat liver by high-fat diets. Biochem J. 186:369-371. Nerurkar, P. V., Pearson, L., Efird, J. T., Adeli, K., Theriault, A. G. and Nerurkar, V. R. (2005) Microsomal triglyceride transfer protein gene expression and ApoB secretion are inhibited by bitter melon in HepG2 cells. J Nutr. 135(4):702-6. Noguchi, R., Yasui, Y., Suzuki, R., Hosokawa, M., Fukunaga, K. and Miyashita, K. (2001) Dietary effects of bitter gourd oil on blood and liver lipids of rats. Arch Biochem Biophys. 396(2):207-12. Pan, W. H., Chang, H. Y., Yeh, W. T., Hsiao, S. Y. and Hung, Y. T. (2001) Prevalence, awareness, treatment and control of hypertension in Taiwan: results of Nutrition and Health Survey in Taiwan (NAHSIT) 1993-1996. J Hum Hypertens. 15 (11):793-798. Picard, F. and Auwerx, J. (2002) PPARγ and Glucose Homeostasis. Annu Rev Nutr. 22: 167-97. Platel, K., Shurpalekar, K.S. and Srinivasan, K. (1993) Influence of bitter gourd (Momordica charantia) on growth and blood constituents in albino rats. Nahrung 37:156-60. Reilly, M. P. and Rader, D. J. (2003) The metabolic syndrome: more than the sum of its parts? Circulation 108:1546-1551. Rao, B. K., Kesavulu, M. M., Giri, R. and Appa, R. C. (1999) Antidiabetic and hypolipidemic effects of Momordica cymbalaria hook. Fruit powder in alloxan-diabetic rats. J Ethnopharmacol. 67:103-9. Senanayake, G. V., Maruyama, M., Shibuya, K., Sakono, M., Fukuda, N., Morishita, T., Yukizaki, C., Kawano, M. and Ohta, H. (2004) The effects of bitter melon (Momordica charantia) on serum and liver triglyceride levels in rats. J Ethnopharmacol. 91(2-3):257-62. Sharma, V. N., Sogani, R. K. and Arora, R. B. (1960) Some observations on hypoglycemia activity in Momordica charantia. India J Med Res. 48:471. Shibib, B. A., Khan, L. A. and Rahman, R. (1993) Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. Biochem J. 292 ( Pt 1):267-70. Sitasawad, S. L., Shewade, Y. and Bhonde, R. (2000) Role of bittergourd fruit juice in STZ-induced diabetic state in vivo and in vitro. J Ethnopharmacol. 73(1-2):71-9. Singh, I. (1997) Biochemistry of peroxisomes in health and disease. Mol Cell Biochem. 167: 1-29. Singh, N., Tyagi, S. D. and Agarwal, S. C. (1989) Effects of long term feeding of acetone extract of Momordica charantia (whole fruit powder) on alloxan diabetic albino rats. Indian J Physiol Pharmacol. 33:97-100. Small, G. M., Burdett, K. and Connock, M. J. (1985) A sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase. Biochem J 227:205-10. Souza, S. C., Yamamoto, M. T., Franciosa, M. D., Lien, P. and Greenberg, A. S. (1998) BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: a potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes 47:691-5. Surwit, R. S., Feinglos, M. N., Rodin, J., Sutherland, A., Petro, A. E., Opara, E.C., Kuhn, C. M. and Rebuffe-Scrive, M. (1995) Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44:645-651. Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A. and Feinglos, M. N. (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37(9):1163-7. Terpstra, H. (2004) Effect of conjugated linoleic acid on body composition and plasma lipids in humans: an review of the literature. Am J Clin Nutr. 79(3):352-61. Review. Virdi, J., Sivakami, S., Shahani, S., Suthar, A. C., Banavalikar, M. M. and Biyani, M. K. (2003) Antihyperglycemic effects of three extracts from Momordica charantia. J Ethnopharmacol. 88(1):107-11. Watson, K. E., Horowitz, B. N. and Matson, G. (2003) Lipid abnormalities in insulin resistant states. Rev Cardiovasc Med. 4:228-36. Willson, T. M. and Wahli, W. (1997) Peroxisome proliferator-activated receptor agonists. Curr Opin Chem Biol. 1(2):235-41. Woods, S. C., Seeley, R. J., Rushing, P. A., D'Alessio, D. and Tso, P. (2003) A controlled high-fat diet induces an obese syndrome in rats. J Nutr. 133, 1081-1087. Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., Ezaki, O., Akanuma, Y., Gavrilova, O., Vinson, C., Reitman, M. L., Kagechika, H., Shudo, K., Yoda, M., Nakano, Y., Tobe, K., Nagai, R., Kimura, S., Tomita, M., Froguel, P. and Kadowaki, T. (2001) The fatderived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Medicine 7:941–946. Ye, J. M., Doyle, P. J., Iglesias, M. A., Wayson, D. G., Cooney, G. J. and Kraegen, E. W. (2001) Peroxisome proliferator-activated receptor (PPAR)-α activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats. Diabetes 50:411-7. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35260 | - |
dc.description.abstract | 代謝症候群指血糖調節異常 (胰島素抗性)、高血脂、中心型肥胖、高血壓等至少三項同時存在者,未經適當控制則具有極高之風險轉為第二型糖尿病及動脈粥狀硬化。PPARs (Peroxisome proliferators activated receptors) 為核受器家族的一員,受 ligand 活化後可啟動下游基因的轉錄,主調控葡萄糖及脂質代謝、運輸及貯存相關基因之表現。本實驗室在過去的研究中顯示,山苦瓜 (Momordica charantia L.) 乙酸乙酯萃物中含有可活化 PPARα 與 PPARγ 之成分,可調控其下游基因之表現。本研究先以高脂飲食誘發 C57BL/6J 小鼠產生血糖、血脂代謝異常現象,探討餵食山苦瓜全果凍乾粉末或其乙酸乙酯萃物,對小鼠體內葡萄糖及脂質代謝與肝臟 PPARα 相關基因表現之影響。分別餵食 C57BL/6J 小鼠含5% 大豆油 (B) 或30% 奶油 (C) 之實驗飼料 16 週後,C 組血糖、胰島素及血清中三酸甘油酯 (TG) 濃度顯著較 B 組高。再將 C 組小鼠隨機分為五組,一組維持原飼料,兩組分別更換為含有5% 山苦瓜全果凍乾粉末 (BGP) 及0.25% 山苦瓜乙酸乙酯萃物 (EAE) 之高油脂飼料,另外以含有0.5% clofibrate (CF) 或 0.004% rosiglitazone (R) 之高油脂飼料作為正對照組。繼續飼養四週後,BGP 組之血糖顯著低於 C 組 (p < 0.05)。飼養九週後,相較於 C 組,BGP 組體內葡萄糖耐受性顯著佳 (p < 0.05)。飼養 11 週後犧牲, BGP 組之體重增加量、血脂質、肝脂質皆顯著低於對照組C組。而 EAE 組在血脂、肝脂之部分指標顯著低於對照組 C 組。改以餵食 Wistar 大鼠含 5% 大豆油 (B) 或 30% 奶油 (C) 之實驗飼料 3 週後,C 組大鼠體重顯著高於 B 組。再將 C 組大鼠隨機分為六組,一組維持原飼料,三組分別更換為含有5% 山苦瓜全果凍乾粉末 (BGP)、1% 山苦瓜乙酸乙酯萃物 (EAE) 或 3% 山苦瓜酒精萃物之高油脂飼料,另外以含有1% clofibrate (CF) 或 0.01% rosiglitazone (R) 之高油脂飼料作為正對照組。飼養四週後,C 組出現口服葡萄糖耐受性較差,但 BGP 組則否 (p < 0.05)。飼養五週後犧牲,結果顯示 BGP 組之腹脂重量顯著低於對照組C 組,且山苦瓜全果凍乾粉末及其乙酸乙酯、酒精萃物可預防因高脂飲食造成的高血糖、高血清胰島素等症狀。此外,攝取山苦瓜全果凍乾粉末或其乙酸乙酯萃物能顯著誘發 β-oxidation 之關鍵酵素 acyl-CoA oxidase mRNA 之表現。綜合上述結果可知,5% 山苦瓜全果凍乾物可改善高脂飲食誘導之體重增加、高血糖、高血脂及葡萄糖不耐現象,可開發為調節血糖與血脂之功能性食品。 | zh_TW |
dc.description.abstract | Metabolic syndrome, which develops as a result of insulin resistance, is
characterized by obesity, glucose intolerance, hyperinsulinemia, dyslipidemia, and hypertension. Peroxisome proliferators-activated receptors (PPARs), ligand-dependent transcription factors that regulate the expression of genes involved in glucose and lipid homeostasis, are molecular targets of well-known therapeutic agents of hyperlipidemia and insulin resistance. Ethyl acetate (EA) extract of bitter gourd (momordica Charantia) has been found to active PPARα and PPARγ significantly. High-fat diet induced obesity rodent model was therefore employed in this study to investigate the effects of Momordica charantia L. on glucose and lipid metabolism. A few PPARα target gene expressions in liver were also examined. In experiment 1, C57BL/6J mice were prefed a high butterfat diet (30%) for 16 weeks for the development of hyperglycemia and hyperlipidemia. These animals were then assigned to 5 groups and respectively fed the high butter fat diet supplemented with none (the C diet group), 5% wild bitter ground powder (the BGP diet group), 0.25% of BGP ethyl acetate extract (the EAE diet group), 0.5% clofibrate (the CF diet group) or 0.004% rosiglitazone (the R group) for 11 weeks. A group of mice was simultaneously fed a basal diet (5% soybean oil, the B diet group) for a total of 27 weeks and serve as the normal control. Hyperglycemia, glucose intolerance, hypertriglyceridemia and hypercholesterolemia were observed in the C group but were significantly improved in the BGP group. In experiment 2, Wistar rats were respectively fed the basal diet (B), or the high butter fat diets for 3 weeks. The high fat fed groups were then assigned to 6 groups and respectively fed the high butterfat diet supplemented with none (C), 5% of bitter ground powder (BGP), 1% EA extract (EAE) or 3% ethanol extract (E) of bitter ground powder, 1% clofibrate (CF) or 0.01% rosiglitazone (R) for 5 weeks. Hyperinsulinemia and glucose intolerance were observed in the C group but not in the BGP, CF and R groups. Serum insulin of the EAE and E groups were also significantly lower than that of the C group. Up-regulation of PPARα target gene (ACO) mRNA expression were observed in rats fed the test diets containing 5% bitter ground powder (BGP) and 1% bitter ground powder EA extract (EAE). In conclusion, 5% wild bitter ground powder improved high fat diet-induced metabolic syndrome, such as hyperglycemia, hyperlipidemia, and glucose intolerance. These results provide evidence that wild bitter melon may potentially be developed as a functional food for ameliorating hyperglycemia and hyperlipidemia. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:45:50Z (GMT). No. of bitstreams: 1 ntu-94-R92b47301-1.pdf: 1041474 bytes, checksum: d5420818d94953441781fd801c09d4bf (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 縮寫對照表 Ⅰ
組別縮寫意義 Ⅱ 中文摘要 Ⅲ Abstract Ⅳ 第一章 緒論 1 第一節 前言 1 第二節 文獻回顧 2 一、代謝症候群 (Metabolic syndrome) 2 二、Diet induced obesity 4 三、苦瓜之介紹 5 四、PPAR 簡介 9 第三節 實驗動機與架構 17 第二章 添加山苦瓜凍乾粉末或其乙酸乙酯萃取物對高脂飲食誘發小鼠血糖血脂異常之改善效應 18 第一節 前言 18 第二節 材料與方法 19 一、實驗設計 19 二、山苦瓜樣品製備 20 三、實驗飼料配製 20 四、動物飼養 22 五、動物犧牲及樣品收集 22 六、血糖分析 23 七、血脂質分析 23 八、肝臟脂質分析 26 九、肝臟過氧化體 Acyl-CoA Oxidase (ACO) 活性分析 27 十、以西方轉漬法 (Western blot) 分析 ACO 之蛋白質含量 32 十一、肝臟 mRNA 基因表現分析---北方墨漬法 (Northern blot) 36 十二、血清胰島素分析 43 十三、統計分析 43 第三節 結果 45 一、高脂飲食餵食 16 週之生長情形及血樣變化 45 二、生長情形 45 三、血清葡萄糖及脂質濃度 47 四、口服葡萄糖耐性試驗Oral glucose tolerance test, OGTT ) 48 五、肝臟脂質濃度 48 六、肝臟過氧化體中 Acyl-CoA oxidase 之活性變化 49 七、肝臟中 acyl-CoA oxidase (ACO) 蛋白質之表現量 49 八、肝臟 ACO 及 L-FABP mRNA 之表現 49 九、血清胰島素濃度 49 十、血清 Adiponectin 濃度 50 第四節 討論 63 第三章 添加山苦瓜凍乾粉末或不同溶劑萃物對Wistar大鼠生理反應之影響 69 第一節 前言 69 第二節 材料與方法 70 一、實驗設計 70 二、山苦瓜樣品製備 71 三、實驗飼料配製 71 四、動物飼養 73 五、動物犧牲及樣品收集 73 六、血糖分析 74 七、血脂質分析 74 八、肝臟脂質分析 74 九、肝臟過氧化體 Acyl-CoA Oxidase (ACO) 活性分析 75 十、肝臟基因表現分析—北方墨漬法 (Northern blot) 75 十一、血清胰島素分析 76 十二、統計分析 76 第三節 結果 77 一、生長情形 77 二、生長情形 78 三、肝臟脂質濃度 79 四、肝臟過氧化體中 Acyl-CoA oxidase 之活性變化 80 五、肝臟 ACO 及 L-FABP mRNA 之表現 80 六、血清胰島素濃度 81 第四節 討論 97 第四章 總結 100 第五章 參考文獻 102 圖目錄 圖 1-1 PPARs 一般結構圖 12 圖 1-2 合成之 PPARs ligands 13 圖 1-3 天然之 PPARs ligands 14 圖 1-4 PPARs 之活化機制 15 圖 1-5 粒線體與過氧化體 β-oxidation 步驟及其相關酵素 16 圖 2-1 以分光光度計測定 acyl-CoA oxidase 活性之方法 29 圖 2-2 C57BL/6J 小鼠餵食實驗飼料前十六週之生長曲線 51 圖 2-3 C57BL/6J 小鼠餵食實驗飼料十一週後肝臟中 Acyl- CoA oxidase 之活性 57 圖 2-4 C57BL/6J 小鼠餵食實驗飼料十一週後肝臟過氧化體 acyl- CoA oxidase 蛋白質之表現量 58 圖 2-5 C57BL/6J 小鼠餵食實驗飼料十一週後以北方墨滯法偵測肝臟 ACO mRNA 之表現量 59 圖 2-6 C57BL/6J 小鼠餵食實驗飼料十一週後以北方墨滯法偵測肝臟 L-FABP mRNA 之表現量 60 圖 2-7 C57BL/6J 小鼠餵食實驗飼料十一週後血清胰島素濃度 61 圖 2-8 C57BL/6J 小鼠餵食實驗飼料十一週後血清 Adiponectin濃度 62 圖 3-1 Wistar大鼠餵食實驗飼料四週後禁食血糖濃度 85 圖 3-2 Wistar大鼠餵食實驗飼料四週後進行口服葡萄糖耐受性試驗之血糖濃度變化 86 圖 3-3 Wistar大鼠餵食實驗飼料四週進行口服葡萄糖耐受性測試之曲線下面積 87 圖 3-4 Wistar大鼠餵食實驗飼料四週後血清三酸甘油酯濃度 88 圖 3-5 Wistar大鼠餵食實驗飼料五週後血清葡萄糖濃度 89 圖 3-6 Wistar大鼠餵食實驗飼料五週後血清三酸甘油酯濃度 90 圖 3-7 Wistar大鼠餵食實驗飼料五週後血清膽固醇濃度 91 圖 3-8 Wistar大鼠餵食實驗飼料五週後血清非酯化游離脂肪酸濃度 92 圖 3-9 Wistar大鼠餵食實驗飼料五週後肝臟中 Acyl- CoA oxidase 之活性 93 圖 3-10 Wistar 大鼠餵食實驗飼料五週後以北方墨漬法偵測肝臟 ACO mRNA之表現量 94 圖 3-11 Wistar 大鼠餵食實驗飼料五週後以北方墨漬法偵測肝臟 FABP mRNA 之表現量 95 圖 3-13 Wistar大鼠餵食實驗飼料四週後血清胰島素濃度 96 表目錄 表 2-1 實驗飼料組成 21 表 2-2 C57BL/6J小鼠餵食實驗飼料十一週後對其體重增加量、總攝食量及飼料利用效率之影響 52 表 2-3 小鼠餵食實驗飼料十一週後組織之絕對重量與相對重量 53 表 2-4 C57BL/6J小鼠餵食實驗飼料前兩週, 第四週及第十一週之血糖、胰島素及血脂質 54 表 2-5 C57BL/6J小鼠餵食實驗飼料九週後OGTT結果 55 表 2-6 C57BL/6J小鼠餵食實驗飼料十一週後肝臟中三酸甘油酯、膽固醇與非酯化游離脂肪酸之濃度 56 表 2-7 趙氏論文與本實驗之實驗條件與實驗結果 68 表 3-1 實驗飼料組成 72 表 3-2 Wistar大鼠餵食實驗飼料五週後對其體重增加量、總攝食量及飼料利用效率之影響 82 表 3-3 Wistar大鼠餵食實驗飼料五週後組織之絕對重量與相對重量 83 表 3-4 Wistar 大鼠餵食實驗飼料五週後肝臟中三酸甘油脂、膽固醇與非酯化游離脂肪酸之濃度 84 表 4-1 投予山苦瓜凍乾物及或其有機溶劑萃物對大鼠及小鼠生理效應之比較 101 | |
dc.language.iso | zh-TW | |
dc.title | 山苦瓜改善血糖血脂代謝異常之效應探討 | zh_TW |
dc.title | Momordica charantia L. improve high fat diet-induced glucose intolerance and hyperlipidemia in rats and mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂紹俊,趙蓓敏,吳文惠,楊偉勛 | |
dc.subject.keyword | 代謝症候群,山苦瓜,OGTT, | zh_TW |
dc.subject.keyword | metabolic syndrome,Momordica charantia L.,OGTT,PPAR, | en |
dc.relation.page | 109 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-29 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。