Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35235
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顧孟愷(Mong-Kai Ku)
dc.contributor.authorChih-Yuan Yangen
dc.contributor.author楊智淵zh_TW
dc.date.accessioned2021-06-13T06:44:59Z-
dc.date.available2008-08-12
dc.date.copyright2005-08-12
dc.date.issued2005
dc.date.submitted2005-07-29
dc.identifier.citation[1] C. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, no.3, pp. 378-423, 1948
[2] R. G. Gallager, “Low Density Parity Check Codes,” IEEE Transaction on Information Theory, vol. IT-8, pp. 21-28, Jan. 1962
[3] R. G. Gallager, “Low Density Parity Check Codes,” Cambridge, MA: MIT Press, 1963
[4] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: Turbo-codes,” IEEE Transactions on Communications, vol. 44, no. 10, pp. 1261-1271, Oct. 1996
[5] D. J.C. Mackay, “Near Shannon Limit Performance of Low Density Parity Check Codes,” Electronics Letters, July 12, 1996
[6] D. J. C. Mackay, “Good Error-Correcting Codes Based on Very Sparse Matrices,” IEEE Transactions on Information Theory, vol. 45, pp. 399-431, Mar. 1999
[7] T. J. Richardson and R. L. Urbanke, “The Capacity of Low-Density Parity-Check Codes under Message-Passing Decoding,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 599-618, February 2001
[8] M. R. Tanner, “A recursive approach to low complexity codes,” IEEE Transaction on Information Theory, vol. 27, September 1981
[9] F. R. Kschischang, B. J. Frey, and H. Loeliger, “Factor Graphs and the Sum-Product Algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498-519, February 2001
[10] T. J. Richardson, M. A. Shokrollahi, R. L. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Transactions on Information Theory, vol. 47, pp. 619-637, Feb. 2001
[11] H. Song, R. M. Todd, and J. R. Cruz, “Low Density Parity Check Codes for Magnetic Recording Channels,” IEEE Transactions on Magnetics, vol. 36, no. 5, pp.2183-2186, Sept. 2000
[12] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell System Technical Journal, vol. 45, pp. 775-1796, December 1966
[13] R. W. Chang, “Orthogonal frequency division multiplexing,” U.S. Patent 3488445 January 1970
[14] R. W. Chang and R. A. Gibby, “A theoretical study of performance of an orthogonal multiplexing data transmission scheme,” IEEE Transactions on Communication Technology, vol. 16, pp. 529-540, August 1968
[15] S. B. Weinstein and P. M. Ebert, “Data transmissions by frequency-division multiplexing using the discrete Fourier transform,” IEEE Transactions on Communication Technology, vol. 19, pp. 628-634, October 1971
[16] Bingham, J.A.C, “Multicarrier Modulation for Data Transmission: An idea whose time has come,” IEEE Communications Magazine, vol. 28, no. 5, pp. 5-14, May 1990
[17] William Y. Zou and Yiyan Wu, “COFDM: an overview,” IEEE Transactions on Broadcasting, vol. 41, no. 1, pp. 1-8, Mar. 1995
[18] H. Futaki and T. Ohtsuki, “Low-density parity-check (LDPC) coded OFDM systems,” IEEE VTC2001 fall, IEEE VTS 54th, vol. 1, pp. 82-86, Oct. 2001
[19] H. Futaki and T. Ohtsuki, “Performance of Low-Density Parity-Check (LDPC) Coded OFDM Systems,” ICC 2002, pp.1696-1700, vol.3, 2002
[20] Curt Schurgers and Mani B. Srivastava, “A Systematic Approach to Peak-to-Average Power Ratio in OFDM,” Electrical Engineering Department, University of California at Los Angeles (UCLA)
[21] Meng-Han Hsieh and Che-Ho Wei, “Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels,” IEEE Transactions on Consumer Electronics, vol. 44, no.1, February 1998
[22] Che-Shen Yen, Yinyi Lin, and YiyanWu, “OFDM System Channel Estimation Using Time-Domain Sequence for Mobile Reception of Digital Terrestrial Broadcasting,” IEEE Transactions on Broadcasting, vol. 46, no. 3, pp. 215-220, September 2000
[23] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel Estimation Techniques Based on Pilot Arrangement in OFDM System,” IEEE Transactions on Broadcasting, vol. 48, no. 3, pp. 223-229, September 2002
[24] Chayat, Naftali, “Updated Submission Template for TGa–revision 2,” IEEE 802.11-98/156r2, April 1998
[25] V. Erceg et al., “Channel Models for Fixed Wireless Applications,” IEEE 802.16a cont. IEEE 802.16.3c-01/29r4, July 16, 2001
[26] J. G. Proakis, “Digital Communications,” Mc Graw Hill, New York, USA, 4th edition, 2001
[27] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Transactions on Information Theory, vol. 28, no. 1, pp. 55-67, Jan 1982
[28] G. Ungerboeck, “Trellis-coded modulation with redundant signal sets — Part I: Introduction,” IEEE Communication Magazine, vol. 25, no. 2, pp. 5-12, February 1987
[29] G. Ungerboeck, “Trellis-coded modulation with redundant signal sets — Part II: State of the art,” IEEE Communication Magazine, vol. 25, no. 2, pp. 12-22, February 1987
[30] G. D. Forney, Jr., R. G. Gallager, G. R. Lang, F. M. Longstaff, and S. U Qureshi, “Efficient modulation for band-limited channels,” IEEE Journal on Areas in Communications, vol. Sac-2, no. 5, pp. 632-647, Sept. 1984
[31] H. Imai and S. Hirakawa, “A new multilevel coding method using error correcting codes,” IEEE Transactions on Information Theory, vol. 23, pp. 371-377, May 1977
[32] U. Wachsmann, R.F.H. Fischer, and J. B. Huber, “Multilevel Codes: Theoretical Concepts and Practical Design Rules,” IEEE Transactions on Information Theory, July 1999
[33] Y. Kofman, E. Zehavi, and S. Shamai, “Analysis of a Multilevel Coded Modulation System,” In 1990 Bilkent International Conference on New Trends in Communication, Control, and Signal Processing, pp. 376-382, Ankara, Turkey, July 1990
[34] Yu Yi and Moon Ho Lee, “Optimized Low-Density Parity-Check (LDPC) Codes for Bandwidth Efficient Modulation,” Vehicular Technology Conference, 2003 IEEE 58th, vol. 4, pp.2367-2370, Oct. 2003
[35] P. Limpaphayom, K. A. Winick, “Power-and Bandwidth-Efficient Communications Using LDPC Codes,” IEEE Transactions on Communications, vol. 52, no.3, pp. 350-355, March 2004
[36] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes: theoretical concepts and practical design rules,” IEEE Transactions on Information Theory, vol. 45, pp. 1361-191, July 1999.
[37] T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On multilevel Block Modulation Codes,” IEEE Transactions on Information Theory, vol. 37, no. 4, pp. 965-975, July 1991
[38] J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfister, “Design of Low-Density Parity-Check Codes for Bandwidth Efficient Modulation,” ITW2001, Cairns, Australia, Sept. 2-7 2001
[39] J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfister, “Capacity-Approaching Bandwidth-Efficient Coded Modulation Schemes Based on Low-Density Parity-Check Codes,” IEEE Transactions on Information Theory, vol. 49, no.9, pp. 2141-2155, Sept. 2003
[40] J. Hou and M. H. Lee, “Multilevel LDPC Codes Design for Semi-BICM,” IEEE Communications Letters, vol. 8, no 11, pp.674-676, Nov. 2004
[41] E. Zehavi, “8-PSK Trellis Codes for a Rayleigh Channel,” IEEE Transactions on Communications, pp. 873-884, May 1992
[42] G. Caire, G. Taricco, and E. Biglieri, “Bit-Interleaved Coded Modulation,” IEEE Transactions on Information Theory, vol.44, no.3, pp. 927-946, May 1998
[43] Huaning Niu, Manyuan Shen, and James A. Ritcey, “Threshold of LDPC-Coded BICM for Rayleigh Fading,” IEEE Communications Letters, vol. 8, no. 7, pp. 455-457, July 2004
[44] Haigang Zhang, Dongfeng Yuan, Piming Ma, and Xiumei Yang, “Performance of LDPC Coded BICM with Low Complexity Decoding,” Personal, Indoor and Mobile Radio Communications, 2003 (PIMRC 2003) 14th IEEE Proceedings on, vol. 2, pp. 1579-1582, 7-10 Sept. 2003
[45] F. Guo, S. X. Ng, and L. Hanzo, “LDPC Assisted Block Coded Modulation for Transmission over Rayleigh Fading Channels,” Proceedings of VTC’2003 (spring), pp. 1867-1871
[46] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity approaching irregular low-density parity-check codes,” IEEE Transactions on Information Theory, vol. 47, no 2, pp. 619-637, Feb. 2001
[47] H. Niu, M. Shen, and J. A. Ritcey, “Threshold of LDPC-Coded BICM for Rayleigh Fading,” IEEE Communications Letters, vol. 8, no. 7, pp.455-457, July 2004
[48] Y. Li and W. E. Ryan, “Bit-Reliability Mapping in LDPC-Coded Modulation Systems,” IEEE Communications Letters, vol. 9, no.1, pp.1-3, Jan. 2005
[49] E. Eleftheriou and S. Olcer, “Low-Density Parity-Check Codes for Digital Subscriber Lines,” IEEE International Conference on Communications, vol. 3, pp. 1752-1757, 28 April - 2 May 2002
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35235-
dc.description.abstractTrellis coded modulation (TCM) invented by G. Ungerboeck (1976) combined coding and modulation using constellation expansion and mapping by set partitioning to achieve substantial coding gains. Low-Density Parity-Check (LDPC) code invented by Gallager (1962) and rediscovered by Mackay and Neal recently (1996) are shown to have near-Shannon-limit performance. Combining with orthogonal frequency division multiplexing (OFDM) modulation technique using efficient coded modulation scheme, performance of LDPC coded OFDM modulation can be better than traditional concatenated Reed-Solomon with convoluational coded OFDM and commonly used LDPC coded OFDM bit-interleaved coded modulation (BICM) schemes.
In this thesis, we investigate efficient LDPC coded OFDM modulation schemes for fixed broadband wireless access (FBWA) communication system. Based on the parameters of IEEE 802.16a-2003 standard OFDM-256 PHY layer specification, we combine LDPC codes with several multilevel quadrature amplitude (QAM) modulations. A set of efficient LDPC coded modulation schemes with different constellation sizes is investigated in this thesis. The bit error rate (BER) performance of these schemes over additive white Gaussian noise (AWGN) and multipath fading channels is simulated and discussed.
We investigate several LDPC coded OFDM modulation schemes, including MultiLevel Coding (MLC), Bit-Interleaved Coded Modulation (BICM), LDPC Coded Modulation (LCM), and Reed-Solomon with LCM (RS-LCM) schemes. Among them, we choose LCM and RS-LCM schemes to evaluate their performance by simulations, and BICM scheme for comparison. RS-LCM scheme has coding gains by 0.3~0.8 dB at a BER (Bit Error Rate) of 10-5 over conventional LDPC coded modulation BICM scheme, while does not suffer from error floors like that in LCM scheme at low bit error rates when low rate component codes are applied. RS-LCM scheme with little extra complexity by the use of Reed-Solomon code can make the transmission of LDPC coded OFDM system more efficient and less vulnerable to multipath fading effect.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:44:59Z (GMT). No. of bitstreams: 1
ntu-94-R92922116-1.pdf: 2774157 bytes, checksum: abb4c659fdfe44040212e81699720ce1 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAbstract iii
Acknowledgements v
Table of Contents vi
List of Tables x
Chapter 1 Introduction 1
1.1 Overview of Wireless Communication System 1
1.2 Trends of Wireless Communication System 1
1.3 Thesis Organization 3
Chapter 2 LDPC Coded OFDM System 4
2.1 Low-Density Parity-Check (LDPC) Codes 4
2.1.1 History of LDPC Codes 4
2.1.2 Representation of LDPC Codes: Tanner Graphs 4
2.1.3 Regular LDPC Codes 6
2.1.4 Irregular LDPC Codes 7
2.1.5 Encoding of LDPC Codes 7
2.1.6 Decoding of LDPC Codes – Sum-Product Algorithm 8
2.1.7 Generation of Likelihood Ratio 11
2.1.8 Applications of LDPC Codes 12
2.2 Orthogonal Frequency Division Multiplexing Technique 13
2.2.1 The Fundamental Theory of OFDM 13
2.2.2 Signal Representation of OFDM Using IDFT/DFT 17
2.2.3 Parallel Data Transmission and Multiple Carriers 17
2.2.4 OFDM Discrete-time Model 18
2.2.5 Guard Interval and Cyclic Prefix 20
2.2.6 Carrier Recovery 21
2.2.6.1 Channel Estimation and Equalization 21
2.2.6.2 Channel Estimation Based on Block-Type Pilot Arrangement 22
2.2.6.3 Channel Estimation Based on Comb-Type Pilot Arrangement 22
2.2.7 High Peak-to-Average Power Ratio Problem 23
2.2.8 Applications of OFDM 24
2.3 LDPC Coded OFDM System Overview 25
Chapter 3 System Description 27
3.1 The Standard IEEE 802.16/WiMAX Forum 27
3.2 Overview of 802.16a OFDM-256 PHY 30
3.2.1 OFDM Symbol Constitution 30
3.2.2 Channel Coding 32
3.2.2.1 Randomization 33
3.2.2.2 Forward Error Coding (FEC) 33
3.2.2.3 Interleaving / De-interleaving 35
3.2.3 Modulation 36
3.2.3.1 Data Modulation / Demodulation 36
3.2.3.2 Pilot Modulation 37
3.3 Wireless Channel Modeling 38
3.3.1 Modeling of General Wireless Channels 39
3.3.2 Channel Impulse Response Used in Simulations 41
Chapter 4 Spectral Efficient Coded Modulation Schemes 43
4.1 Relative Work 43
4.1.1 Trellis Coded Modulation (TCM) 43
4.1.2 Multilevel Coding (MLC) Scheme 47
4.1.3 Bit-Interleaved Coded Modulation (BICM) Scheme 51
4.2 LDPC Coded Modulation BICM Scheme 52
4.3 LDPC Coded Modulation (LCM) Scheme 54
4.4 Reed-Solomon Code with LCM (RS-LCM) Scheme 57
Chapter 5 Simulation Results and Discussion 59
5.1 Simulation Results of Original RS-CC Coded OFDM-256 59
5.2 Simulation Results of LDPC BICM Scheme 62
5.3 Simulation Results of LCM Scheme 65
5.4 Simulation Results of RS-LCM Scheme 72
5.5 Simulation Results Summary 73
Chapter 6 Conclusion and Future Work 75
6.1 Conclusion 75
6.2 Future Work 75
References 77
dc.language.isoen
dc.subject編碼調變zh_TW
dc.subject低密度奇偶校驗編碼zh_TW
dc.subject正交分頻多工zh_TW
dc.subjectcoded modulationen
dc.subjectLow-Density Parity-Check (LDPC) codeen
dc.subjectOrthogonal Frequency Division Multiplexing (OFDM)en
dc.title專為無線通訊應用之低密度奇偶校驗編碼正交分頻多工調變系統設計zh_TW
dc.titleLow-Density Parity-Check Coded Orthogonal Frequency Division Multiplexing Modulation System Design for Wireless Communication Applicationsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪士灝(Shih-Hao Hung),黃鐘揚(Chung-Yang Huang),廖俊睿(Jan-Ray Liao)
dc.subject.keyword低密度奇偶校驗編碼,正交分頻多工,編碼調變,zh_TW
dc.subject.keywordLow-Density Parity-Check (LDPC) code,Orthogonal Frequency Division Multiplexing (OFDM),coded modulation,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2005-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved