Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35154
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞(Hung-Chun Chang)
dc.contributor.authorYao-Jen Liuen
dc.contributor.author劉耀仁zh_TW
dc.date.accessioned2021-06-13T06:42:27Z-
dc.date.issued2005
dc.date.submitted2005-07-31
dc.identifier.citation[1] Abarbanel, S., and D. Gottlieb, 'On the construction and analysis of absorbing layers in CEM,' Appl. Numer. Math., vol. 27, pp. 331--340, 1998.
[2] Absil, P. P., J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, 'Compact microring notch filters,' IEEE Photon. Technol.
Lett., vol. 12, pp. 398--400, 2000.
[3] Adar, R., M. R. Serbin, and V. Mizrahi, 'Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,' J. Lightwave Technol., vol. 12, pp. 1369--1372, 1994.
[4] Akarca-Biyikli, S. S., I. Bulu, and E. Ozbay, 'Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,' J. Opt. A, vol. 7, pp. S159--S164, 2005.
[5] Berenger, J. P., 'A perfectly matched layer for the absorption of electromagnetic waves,' J. Comput. Phys., vol. 114, pp. 185--200, 1994.
[6] Boriskina, S. V., T. M. Benson, P. Sewell, and A. I. Nosich, 'Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness,' J. Opt. Soc. Am. B,
vol. 10, pp. 1792--1796, 2005.
[7] Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, 'Extraordinary optical transmission through sub-wavelength hole arrays,' Nature, vol. 391, pp. 667--669, 1998.
[8] Feng, N. N., W. P. Huang, and G. R. Zhou, 'A hybrid time-domain technique for simulation of high-density integrated optical circuits,' IEEE J. Quantum Electron., vol. 11, pp. 452--456, 2005.
[9] Grupp, D. E., H. J. Lezec, T. Thio, and T. W. Ebbesen, 'Beyond the Bethe limit: tunable enhanced light transmission through a single subwavelength aperture,' Adv. Mater. vol. 11, pp. 860--862, 1999.
[10] Hagness, S. C., D. Rafizadeh, S. T. Ho, and A. Ta
ove, 'FDTD microcavity simulations: design and experimental realization of waveguidecoupled single-mode ring and whispering-gallery-mode disk resonators,'
J. Lightwave Technol., vol. 15, pp. 2154--2165, 1997.
[11] Hong, C. T., Finite-Di erence Time-Domain Analysis of High-Density Integrated Optic Guided-Wave Devices. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taiper, Taiwan, June 2003.
[12] Joseph, R. M., and A. Taflove, 'FDTD Maxwell's equations models for nonlinear electrodynamics and optics,' IEEE Trans. Antennas Propagat., vol. 45, pp. 364--374, 1997.
[13] Joseph, R. M., P. M. Gooriian, and A. Taflove, 'Direct time integration of Maxwell's equations in two-dimensional dielectric waveguides for
propagation and scattering of femtosecond electromagnetic solitons,' Opt. Lett., vol. 18, pp. 491--493, 1993.
[14] Kashiwa, T., and I. Fukai, 'A treatment by the FD-TD method of the dispersive characteristics associated with electronic polarization,' Microwave Opt. Technol. Lett., vol. 3, no. 6, pp. 203--205, 1990.
[15] Klunder, D. J. W., M. L. M. Balistreri, F. G. Blom, A. Driessen, H. J. W. M. Hoekstra, L. Kuipers, and N. F. Hulst, 'High-resolution photonscanning tunneling microscope measurements of the whispering gallery
modes in a cylindrical microresonator,' IEEE Photon. Technol. Lett., vol. 12, pp. 1531--1533, 2000.
[16] Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan, 'A transmitting boundary for transient wave analyses,' Scientia Sinica (series A), vol. 27, pp. 1063--1076, 1984.
[17] Little, B. E., H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, 'Wavelength switching and routing using absorption and resonance,' IEEE Photon. Technol. Lett., vol 10, pp. 816--818, 1998.
[18] Little, B. E., and S. T. Chu, 'Theory of loss and gain trimming of resonator-type filters,' IEEE Photon. Technol. Lett., vol. 12, pp. 636--638, 2000.
[19] Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-vidal, and T. W. Ebbesen, 'Beaming light from a subwavelength
aperture,' Science, vol. 297, pp. 820--822, 2002.
[20] Luebbers, R., F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider. 'A frequency-dependent finite-difference time-domain formulation for dispersive materials,' IEEE Trans. Electromag. Compat., vol. 32, no.
3, pp. 222--227, 1990.
[21] Manolatous, C., S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, 'High-density integrated optics,' J. Lightwave Technol., vol. 17 pp. 1682--1692, 1998.
[22] Mur, G., 'Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations.' IEEE Trans. Electromag. Compat., vol. 23, pp. 377--382, 1981.
[23] Powell, C. J., J. B. Swan, 'Effect of oxidation on the characteristic loss spectra of aluminum and magnesium,' Phys. Rev. vol. 118, pp. 640--643, 1960.
[24] Rabus, D. G., M. Hamacher, U. Troppenz, and H. Heidrich, 'High-Q channel dropping filters using ring resonators with integrated SOAs,' IEEE Photon. Technol. Lett., vol. 8, pp. 69--71, 1996.
[25] Sullivan, D. M, Electromagnetic simulation using the FDTD method, New York, MA: IEEE Press, 2000.
[26] Taflove, A., and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edition. Boston, MA: Artech House, 2000.
[27] Thio, T., K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, 'Enhanced light transmission through a single subwavelength aperture,' vol. 11 pp. 1972--1974, 2001.
[28] Wang T. J., Y. H. Huang, and H. L. Chen, 'Resonant-wavelength tuning of microring filters by oxygen plasma treatment,' IEEE, Photon., Technol. Lett., vol. 17, pp. 582--584, 2005.
[29] Wood, R. W., 'On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' Phil. Magm., vol. 4, pp. 396--402, 1902.
[30] Yee, K. S., 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' IEEE Trans. Antennas Propagat., vol. 3, pp. 302--307, 1966.
[31] Zhao, L., and A. C. Cangellaris, 'GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids,' IEEE. Trans. Microwave Theory Tech., vol. 44, pp. 2555--2563, 1996.
[32] Ziolkowski, R. W., 'Time-derivative Lorentz materials and their utilization as electromagnetic absorbers,' Phys. Rev. E, vol. 55, pp. 7696--7703, 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35154-
dc.description.abstract本篇論文採用有限差分時域法為數值模型模擬研究數種不同的元件,並以數學動機推導之完美匹配層作為吸收邊界的處理。首先分析波導耦合圓形微共振腔以及方形微共振腔。在分析微共振腔的同時我們亦針對格點配置的問題做了探討,期能使模型更接近真實情形。討論中發現,將格點中的電場安置在邊界上並將該格點的折射率取為邊界兩邊的平均值,在我們分析的例子中能得到最好的結果。其次,我們討論了表面電漿和金屬次波長孔隙的電磁波穿透問題,之後便著手分析一些光波段以及微波段的次波長孔隙的元件。其中有限差分數值分析使用了Drude色散模型來模擬金屬,在模擬中可以觀察到當表面電漿被激發時,波穿過孔隙穿透率的增強以及指向性。除了元件的研究,我們也提出了以非線性色散模型修改的完美匹配層。當模擬波在非線性色散介質中的行為時,此修改過的完美匹配層可以安置在計算空間的周圍,以有效地吸收往外擴散的波以模擬無限大的空間。zh_TW
dc.description.abstractIn this research, the finite-difference time-domain (FDTD) method is employed to simulate several categories of devices with the appearance of the mathematic motivated perfectly matching layer (PML) around the computational
domain. First, the micro-ring and square micro-ring resonators are analyzed. The issue of proper grid arrangement over the modelled structures for efficient numerical convergence is discussed. We discover that putting the electric field grid just at the boundary of dielectric interfaces and taking the index average of the grid provide the best results in the cases we concern.
Two geometries of micro-ring resonator coupled by straight waveguides are simulated with the slab index of 3.2 and the cladding index of 1.0. Second, the surface plasmons (SPs) and the metallic subwavelength apertures are discussed. Several structures are analyzed by imposing the Drude model for material dispersion into the FDTD scheme to model the metal in the optical and microwave ranges. The enhancement of transmittance and the directional property are shown through the simulations. Beside simulation of various devices, we also implement a PML modified by nonlinear and dispersive model. The modified PML can be used to truncate the computational domain of modelling a nonlinear-dispersive medium to properly absorb the outgoing waves.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:42:27Z (GMT). No. of bitstreams: 1
ntu-94-R92941040-1.pdf: 6292476 bytes, checksum: 12a1c2fcc5e064bb0702c263fef04b0e (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Mathematical Formulation 5
2.1 The Finite-Difference Time-Domain
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 The Yee Algorithm . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Numerical Dispersion, Numerical Stability, and Other
Characteristics . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Modelling of Frequency Dispersive Material . . . . . . . . . . 10
2.2.1 The Auxiliary Differential Equation Method . . . . . . 11
2.3 Absorbing Boundary Conditions . . . . . . . . . . . . . . . . . 13
2.3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Mathematically Motivated Perfectly Matched
Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Mathematically Motivated PMLs for Nonlinear-Dispersive Media
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Nonlinear-Dispersive Formulations . . . . . . . . . . . 16
2.4.3 Nonlinear-Dispersive PML . . . . . . . . . . . . . . . . 18
2.4.4 Numerical Experiments . . . . . . . . . . . . . . . . . . 19
2.4.5 Modelling the Nonlinear-Dispersive Phenomenon . . . 20
2.5 Field Extension Techniques in FDTD simulations . . . . . . . 21
3 Modelling of Microresonators 32
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Grid Arrangement Issue . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Grid Arrangement in a Slab Waveguide . . . . . . . . . 34
3.2.2 Grid Arrangement in a 90-Degree Bend Waveguide . . 36
3.3 Micro-Ring Resonators . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Square Micro-Ring Resonators . . . . . . . . . . . . . . . . . . 38
4 Modelling of Subwavelength Aperture 57
4.1 Surface Plasmons . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Subwavelength Apertures . . . . . . . . . . . . . . . . . . . . . 58
4.3 The Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Modelling of Subwavelength Apertures in Microwave Range . . 61
4.4.1 The Reference Sample . . . . . . . . . . . . . . . . . . 61
4.4.2 The Sinusoidal Grating Sample . . . . . . . . . . . . . 62
4.4.3 The Symmetric Rectangular Grating Sample . . . . . . 64
4.4.4 The Asymmetric Rectangular Grating Sample . . . . . 64
4.4.5 The Directivity/Beaming Property . . . . . . . . . . . 65
4.5 Modelling of Subwavelength Apertures in Optical Frequency
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Highly Directional Emission Properties . . . . . . . . . . . . . 67
5 Conclusion 88
dc.language.isoen
dc.title以有限差分時域法分析微共振器與金屬次波長孔隙結構zh_TW
dc.titleFinite-Difference Time-Domain Analysis of Microresonators and Metallic Subwavelength Aperture Structuresen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王維新(Way-Seen Wang),鄧君豪(Chun-Hao Teng)
dc.subject.keyword有限差分時域法,微共振器,次波長孔隙,zh_TW
dc.subject.keywordFDTD,Microresonator,Subwavelength Aperture,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2005-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
6.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved