請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35097完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 湯志永 | |
| dc.contributor.author | Min-Chen Sun | en |
| dc.contributor.author | 孫閔貞 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:40:50Z | - |
| dc.date.available | 2005-08-04 | |
| dc.date.copyright | 2005-08-04 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-08-01 | |
| dc.identifier.citation | Abbott GW, Sesti F, Splaewki I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA. MiRP1 forms IKr potassium channels with HERG and in voltage dependence of HERG is associated with cardiac arrhythmia. Cell 1999, 97:175–187
American Society of Human Genetics Ad Hoc Committeee on Cystic Fibrosis Carrier Screening Statement of The American Society of Human Genetics on Cystic Fibrosis Carrier Screening. Am. J. Hum. Genet. 1992, 51:1443-1444 Arikkath J, Chen CC, Ahern C, Allamand V, Flanagan JD, Coronado R, Gregg RG, Campbell KP. Gamma 1 subunit interactions within the skeletal muscle L-type voltage-gated calcium channels. J Biol Chem. 2003, 278:1212 -1219 Arikkath J, Campbell KP. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol. 2003, 13: 298-307 Bertrand CA, and Frizzell RA. The role of regulated CFTR trafficking in epithelial secretion. Am J Physiol Cell Physiol. 2003, 285:C1-C18 Boat TF, Welsh MJ, Beaudet AL. The Metabolic Basis of Inherited Disease. New York, McGraw-Hill, 1989, p2649-2680 Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P, Litt M. Episodic ataxia with myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat. Genet. 1994, 8:136–140 Burgess DL, Gefrides LA, Foreman PJ, Noebels JL. A cluster of three novel Ca2+ channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family. Genomics 2001, 71:339-350 Campbell KP. Primary structure of the gamma subunit of the DHP- sensitive calcium channel from skeletal muscle. Science 1990, 248:490-492 Catterall WA. Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann N Y Acad Sci. 1999, 868:144- 159 Chang XB, Cui L, Hou YX, Jensen TJ, Aleksandrov AA, Mengos A, Riordan JR. Removal of multiple arginine-framed trafficking signals overcomes misprocessing of Δ508 CFTR present in most patients with cystic fibrosis. Mol Cell. 1999, 4:137-142 Charvin N, L'eveque C, Walker D, Berton F, Raymond C, Kataoka M, Shoji-Kasai Y, Takahashi M, De Waard M, Seagar MJ. Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alpha1A subunit of the P/Q-type calcium channel. EMBO J. 1997, 16:4591-4596 Chen YT and Tang CY. Dominant-negative effect of mutant P/Q type calcium channel associated with EA2. Thesis of Department of Physiology, College of Medicine, National Taiwan University. 2004 Chen YH, Li MH, Zhang Y, He LL, Yamada Y, Fitzmaurice A, Shen Y, Zhang H, Tong L, Yang J. Structural basis of the alpha1-beta subunit interaction of voltage-gated Ca2+ channels. Nature 2004, 429:675-680 Chien AJ, Gao T, Perez-Reyes E, Hosey MM. Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the beta2a subunit. J Biol Chem. 1998, 273:23590-23597 Chinnery PF, DiMauro S, Shanske S, Schon EA, Zeviani M, Mariotti C, Carrara F, Lombes A, Laforet P, Ogier H, Jaksch M, Lochmuller H, Horvath R, Deschauer M, Thorburn DR, Bindoff LA, Poulton J, Taylor RW, Matthews JN, Turnbull DM. Risk of developing a mitochondrial DNA deletion disorder. Lancet 2004, 364:592-596 Chu PJ, Robertson HM, Best PM. Calcium channel gamma subunits provide insights into the evolution of this gene family. Gene 2001, 280:37-48 Collins FS. Cystic fibrosis: Molecular biology and therapeutic implications. Science 1992, 256:774-779 Cornet V, Bichet D, Sandoz G, Marty I, Brocard J, Bourinet E, Mori Y, Villaz M, De Waard M. Multiple determinants in voltage-dependent P/Q calcium channels control their retention in the endoplasmic reticulum. Eur J Neurosci. 2002, 16:883-95 Curtis BM, Catterall WA. Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 1984, 23:2113-2118 De Waard M, Scott VE, Pragnell M, Campbell KP. Identification of critical amino acids involved in alpha1-beta interaction in voltage- dependent Ca2+ channels. FEBS Lett. 1996, 380:272-276 Denier C, Ducros A, Vahedi K, Joutel A, Thierry P, Ritz A, Castelnovo G, Deonna T, Gerard P, Devoize JL, Gayou A, Perrouty B, Soisson T, Autret A, Warter JM, Vighetto A, Van Bogaert P, Alamowitch S, Roullet E, Tournier-Lasserve E. High prevalence of CACNA1A truncations and broader clinical spectrum in episodic ataxia type 2. Neurology 1999, 52:1816-1821 Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 1992, 358:761-764 Deutsch C. The birth of a channel. Neuron 2003, 40:265-276 Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science 1999, 286:1882-1888 Ficker E, Dennis AT, Obejero-Paz CA, Castaldo P, Taglialatela M, Brown AM. Retention in the endoplasmic reticulum as a mechanism of dominant- negative current suppression in human long QT syndrome. J Mol Cell Cardiol. 2000, 32:2327-2337 Fishburn CS, Elazar Z, Fuchs S. Differential glycosylation and intracellular trafficking for the long and short isoforms of the D2 dopamine receptor. J Biol Chem. 1995,270:29819-29824 Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet. 1999, 8:1893-1900 Gottesman S1, Maurizi MR, Wickner S. Regulatory subunits of energy-dependent proteases. Cell 1997, 91:435-438 Gottesman S2, Wickner S, Maurizi MR. Protein quality control: triage by chaperones and proteases. Genes Dev. 1997, 11:815-823 Griggs RC, Moxley RT 3rd, Lafrance RA, McQuillen J. Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 1978, 28:1259-1264 Guida S, Trettel F, Pagnutti S, Mantuano E, Tottene A, Veneziano L, Fellin T, Spadaro M, Stauderman K, Williams M, Volsen S, Ophoff R, Frants R, Jodice C, Frontali M, Pietrobon D. Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. Am J Hum Genet. 2001, 68:759-764 Gurnett CA, Felix R, Campbell KP. Extracellular interaction of the voltage-dependent Ca2+ channel alpha2delta and alpha1 subunits. J Biol Chem. 1997, 272:18508-18512 Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999, 397:271-274 Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 1992, 356:441-443 Hu Q, Saegusa H, Hayashi Y, Tanabe T. The carboxy-terminal tail region of human Cav2.1 (P/Q-type) channel is not an essential determinant for its subcellular localization in cultured neurones. Genes Cells 2005, 10:87-96 Huang FD, Chen J, Lin M, Keating MT, Sanguinetti MC. Long-QT syndrome-associated missense mutations in the pore helix of the HERG potassium channel. Circulation 2001, 104:1071-1075 Jaskolski F, Coussen F, Nagarajan N, Normand E, Rosenmund C, Mulle C. Subunit composition and alternative splicing regulate membrane delivery of kainate receptors. J Neurosci. 2004, 24:2506-2515 Jouvenceau A, Eunson LH, Spauschus A, Ramesh V, Zuberi SM, Kullmann DM, Hanna MG. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet. 2001, 358:801-807 Jay SD, Ellis SB, McCue AF, Williams ME, Vedvick TS, Harpold MM, Campbell KP. Primary structure of the gamma subunit of the DHP- sensitive calcium channel from skeletal muscle. Science 1990, 248:490-492 Jen J, Wan J, Graves M, Yu H, Mock AF, Coulin CJ, Kim G, Yue Q, Papazian DM, Baloh RW. Loss of-function EA2 mutations are associated with impaired neuromuscular transmission. Neurology 2001, 57:1843-1848 Jen J, Kim GW, Baloh RW. Clinical spectrum of episodic ataxia type 2. Neurology 2004, 62:17-22 Jensen T, Loo M, Pind S, Williams D, Goldberg A, Riordan J. Multiple proteolytic systems, including the proteosome, contribute to CFTR processing. Cell 1995, 83:129-136 Jimenez-Sanchez G, Childs B, Valle D. Human disease genes. Nature 2001, 409:853-855 Kagan A, Yu Z, Fishman GI, McDonald TV. The dominant negative LQT2 mutation A561V reduces wild-type HERG expression. J Biol Chem. 2000, 275:11241-11248 Kim MS, Morii T, Sun LX, Imoto K, Mori Y. Structural determinants of ion selectivity in brain calcium channel. FEBS. Lett. 1993, 318:145-148 Klugbauer N, Dai S, Specht V, Lacinova L, Marais E, Bohn G, Hofmann F. A family of gamma-like calcium channel subunits. FEBS Lett. 2000, 470:189-197 Kosolapov A, Deutsch C. Folding of the voltage-gated K+ channel T1 recognition domain. J Biol Chem. 2003, 278:4305-4813 Kramer PL, Yue Q, Gancher ST, Nutt JG, Baloh R, Smith E, Browne D, Bussey K, Lovrien E, Nelson S, et al. A locus for the nystagmus-associated form of episodic ataxia maps to an 11-cM region on chromosome 19p. Am J Hum Genet. 1995, 57:182-185 Kullmann DM. The neuronal channelopathies. Brain 2002, 125:1177-1195 Kuo CC, Hess P. Block of the L-type Ca2+ channel pore by external and internal Mg2+ in rat phaeochromocytoma cells. J. Physiol. 1993, 466:683-706 Lansman JB, Hess P, Tsien RW. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J. Gen. Physiol. 1986, 88:321-347 Lejeune, J. Le mongolism: premier exemple d'aberration autosomique humaine. Ann. Genet. 1959, 1:41-49 (in French) Letts E, Felix R, Biddlecome GH, Arikkath J, Mahaffey CL, Valenzuela A, Bartlett FS II, Mori Y, Campbell KP, Frankel WN. The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat Genet. 1998, 19: 340-347 Leung AT, Imagawa T, Campbell KP. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J Biol Chem. 1987, 262:7943-7946 Luebke JI, Dunlap K, Turner TJ. Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron 1993, 11:895-902 Lux A, Gallione CJ, Marchuk DA. Expression analysis of endoglin missense and truncation mutations: insights into protein structure and disease mechanisms. Hum Mol Genet. 2000, 9:745-755 Michele DE, Barresi R, Kanagawa M, Saito F, Cohn RD, Satz JS, Dollar J, Nishino I, Kelley RI, Somer H, Straub V, Mathews KD, Moore SA, Campbell KP. Post-translational disruption of dystroglycan -ligand interactions in congenital muscular dystrophies. Nature 2002, 418:417-422 Mochida S, Westenbroek RE, Yokoyama CT, Zhong H, Myers SJ, Scheuer T, Itoh K, Catterall WA. Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels. Proc Natl Acad Sci U S A. 2003, 100:2819-2824 Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N, Mori E, Copeland NG, Jenkins NA, Matsushita K, Matsuyama Z, Imoto K. Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)). J Neurosci. 2000, 20:5654-5662 Moss FJ, Viard P, Davies A, Bertaso F, Page KM, Graham A, Canti C, Plumpton M, Plumpton C, Clare JJ, Dolphin AC. The novel product of a five-exon stargazin-related gene abolishes CaV2.2 calcium channel expression. EMBO J. 2002, 21:1514-1523 Maximov A, Bezprozvanny I. Synaptic targeting of N-type calcium channels in hippocampal neurons. J Neurosci. 2002, 22:6939-6952 Naren AP, Cormet-Boyaka E, Fu J, Villain M, Blalock JE, Quick MW, Kirk KL. CFTR chloride channel regulation by an interdomain interaction. Science 1999, 286:544-548 Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996, 87:543-552 Page KM, Heblich F, Davies A, Butcher AJ, Leroy J, Bertaso F, Pratt WS, Dolphin AC. Dominant-negative calcium channel suppression by truncated constructs involves a kinase implicated in the unfolded protein response. J Neurosci. 2004, 24:5400-5409 Pind S, Riordan JR, Williams DB. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1994, 269:12784-12788 Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP, Campbell KP. Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature 1994, 368:67-70 Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Lannuzzi MC, Collins FS, Tsui LC. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989, 245:1066-1073 Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol. 2004, 14:20-28 Ruth P, Rohrkasten A, Biel M, Bosse E, Regulla S, Meyer HE, Flockerzi V, Hofmann F. Primary structure of the beta subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 1989, 245:1115-1118 Sanguinetti MC, Curran ME, Spector PS, Keating MT. Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci U S A. 1996, 93:2208-2212 Schwiebert E, Egan M, Hwang T, Fulmer S, Allen S, Cutting G, Guggino W. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 1995, 81:1063-1073 Scott DB, Blanpied TA, Swanson GT, Zhang C, Ehlers MD. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci. 2001, 21:3063-3072 Sharp AH, Black JL 3rd, Dubel SJ, Sundarraj S, Shen JP, Yunker AM, Copeland TD, McEnery MW. Biochemical and anatomical evidence for specialized voltage-dependent calcium channel gamma isoform expression in the epileptic and ataxic mouse, stargazer. Neuroscience 2001, 105:599-617 Sheng ZH, Yokoyama CT, Catterall WA. Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. Proc Natl Acad Sci U S A. 1997, 94:5405-5410 Shovlin CL, Hughes JM, Scott J, Seidman CE, Seidman JG. Characterization of endoglin and identification of novel mutations in hereditary hemorrhagic telangiectasia. Am J Hum Genet. 1997, 61:68-79 Standley S, Roche KW, McCallum J, Sans N, Wenthold RJ. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 2000, 28:887-898 Stutts MJ, Canessa C, Olsen J, Hamrick M, Cohn J, Rossier B, Boucher R. CFTR as a cAMP-dependent regulator of sodium channels. Science 1995, 269:847-850 Takahashi T, Momiyama A. Different types of calcium channels mediate central synaptic transmission. Nature 1993, 366:156-158 Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 1987, 328 :313-318 Teh BT, Silburn P, Lindblad K, Betz R, Boyle R, Schalling M, Larsson C. Familial periodic cerebellar ataxia without myokymia maps to a 19-cM region on 19p13. Am J Hum Genet. 1995, 56:1443-1449 Trombetta ES, Parodi AJ. Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol. 2003;19:649-676 Van Petegem F, Clark KA, Chatelain FC, Minor DL Jr. Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 2004, 429:671-675 Vance CL, Begg CM, Lee WL, Dubel SJ, Copeland TD, Sonnichsen FD, McEnery MW. N-type calcium channel/syntaxin/SNAP-25 complex probed by antibodies to II-III intracellular loop of the alpha1B subunit. Neuroscience 1999, 90:665-676 Veitia RA. Exploring the etiology of haploinsufficiency. Bioessays 2002, 24175-184 Viard P, Butcher AJ, Halet G, Davies A, Nurnberg B, Heblich F, Dolphin AC. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat Neurosci. 2004, 7:939-946 von Brederlow B, Hahn AF, Koopman WJ, Ebers GC, Bulman DE. Mapping the gene for acetazolamide responsive hereditary paryoxysmal cerebellar ataxia to chromosome 19p. Hum Mol Genet. 1995, 4:279-284 Walker D, Bichet D, Geib S, Mori E, Cornet V, Snutch TP, Mori Y, De Waard M. A new beta subtype-specific interaction in alpha1A subunit controls P/Q-type Ca2+ channel activation. J Biol Chem. 1999, 274:12383-12390 Wappl E, Koschak A, Poteser M, Sinnegger MJ, Walter D, Eberhart A, Groschner K, Glossmann H, Kraus RL, Grabner M, Striessnig J. Functional consequences of P/Q-type Ca2+ channel Cav2.1 missense mutations associated with episodic ataxia type 2 and progressive ataxia. J Biol Chem. 2002, 277:6960-6966 Ward C, Kopito R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1994, 269:25710-25718 Ward C, Omura C, Kopito R. Degradation of CFTR by the ubiquitin- proteosome pathway. Cell 1995, 83:121-128 Xia H, Hornby ZD, Malenka RC. An ER retention signal explains differences in surface expression of NMDA and AMPA receptor subunits. Neuropharm 2001, 41:714-723 Yang J, Ellinor PT, Sather WA, Zhang JF, Tsien RW. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 1993, 366:158-161 Zhou Z, Gong Q, Epstein ML, January CT. HERG channel dysfunction in human long QT syndrome. Intracellular transport and functional defects. J Biol Chem. 1998, 273:21061-21066 Zhu J, Watanabe I, Gomez B, Thornhill WB. Heteromeric Kv1 potassium channel expression: amino acid determinants involved in processing and trafficking to the cell surface. J Biol Chem. 2003, 278:25558- 25567 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35097 | - |
| dc.description.abstract | P/Q型鈣離子通道是由形成離子孔道 (pore-forming) 的α1A subunit與其他α2δ、β等auxiliary subunits所組成,其神經生理功能主要是在調控突觸傳遞作用和神經細胞的興奮性。陣發性不協調第二型(episodic ataxia type 2,EA2)是一種與小腦運動功能失常有關的遺傳性自體顯性疾病。根據分子遺傳學的研究結果顯示,EA2是由於P/Q型鈣離子通道之α1A subunit突變是所導致。生物物理研究顯示,與正常型鈣離子通道相比,EA2相關的突變種鈣離子通道,幾乎完全失去離子通道功能。如何由α1A subunit突變進而導致EA-2諸多症狀的機制,至今仍不完全清楚。我們實驗室先前的電生理研究結果顯示數種與EA2相關之鈣離子通道縮短突變(truncation mutants)對於正常型鈣離子通道有明顯的顯性抑制作用(dominant-negative effect)。因此,我們進一步以細胞生物學的方法,探討EA2相關突變種之顯性抑制作用對P/Q型鈣離子通道在細胞內運送之影響,以對EA2突變種造成之顯性抑制作用之分子機制有更深一層的了解。
我們的研究方法是將帶有GFP-tag的正常型與突變種鈣離子通道α1 subunit (R1281X 、F1406C 、R1549X、R1669X、E1761K 、△681;783X 、Ins1004;1070X、△1177;1189X)表現在HEK293T細胞,結合一些細胞胞器的螢光標記,以共軛焦顯微鏡觀察,從次細胞層次探討突變種鈣離子通道以及正常型混合突變種鈣離子通道在細胞內的biogenesis。Missense mutation F1406C和正常型鈣離子通道最相似,在細胞膜都有很高的分佈比例。相較於正常型,E1761K、R1549X、R1669X則是細胞膜的分佈比例皆有下降的現象。R1281X和△681;783X都是只有兩個domain的縮短突變,卻能夠使大部分的鈣離子通道滯留在細胞質中。利用內質網標記,顯示R1281X、△681;783X突變蛋白存在於內質網中。 混合表達正常型與突變種鈣離子通道,發現正常型蛋白較容易滯留在細胞質中,進一步利用內質網標記確認正常型蛋白質亦滯留於內質網中。利用低溫處理,能夠促進混合表達之正常型鈣離子通道運送至細胞膜的能力,亦為一強烈的間接證明滯留的胞器確為內質網。因此,顯性抑制作用的分子機制之一可能是正常型鈣離子通道蛋白質受到EA2相關突變種蛋白質的影響而滯留在內質網。 此外,我們還發現4種在loop domain II-III以及domain III S1 segment區域發生truncation mutation之EA2突變種的細胞質滯留現象特別明顯,而且這四個突變種有隨著胺基酸序列越短,滯留在細胞質的情形越為顯著的現象。這個結果暗示了loop domain II-III對於鈣離子通道蛋白的膜運送過程的重要性。 | zh_TW |
| dc.description.abstract | P/Q-type calcium channel are composed of pore-forming α1A subunit and auxiliary α2δ, β and γ subunits. The neurophysiological role of P/Q-type calcium channels is to modulate synaptic and neuronal excitability. Episodic ataxia type-2 (EA2) is an inherited autosomal dominant disease related to cerebellar dysfunction. Molecular genetic studies have demonstrated that EA2 is associated with mutations in human α1A subunit. Biophysical studies have shown that most EA2 related mutations result in significant loss of function of P/Q-type Ca2+ channels. The exact mechanism of how mutant P/Q-type Ca2+ channels result in EA2 phenotypes is, however, not fully understood. Our previous functional studies in Xenopus oocytes support the idea that EA2 mutants may exert dominant-negative effects on wild-type P/Q-type Ca2+ channels. To further pursue the molecular mechanism underlying the dominant-negative effect of EA2 mutations, we test the effect of the EA2 mutations on the membrane trafficking of human P/Q-type Ca2+ channels.
By expressing GFP-tagged wild type or mutants in HEK293T cells, we study the subcellular distribution of GFP signals using confocal microscopy. The missense mutation F1406C shows similar subcellular distribution pattern with that of wild-type, whereas E1761K, R1549X, R1669X mutants display less efficient membrane trafficking pattern. Furthermore, two 2-domain truncation mutants, R1281X and △681;783X, exhibit extensive cytoplasm retention pattern. When we co-express GFP-tagged WT with EA2 mutations, we notice a significant enhanced retention of GFP-WT signals in the cytoplasm. The cytoplasm retention pattern of WT Cav2.1, as well as those of R1281X and △681;783X, colocalize with an ER marker, suggesting that these proteins are trapped in the ER. Thus, the mechanism of the dominant-negative effect of EA2 mutations may involve ER-retention of wild-type Cav2.1 channels. In addition, four EA2 mutations involving premature stop codon within the protein region of loop domainⅡ-Ⅲand domain Ⅲ S1 segment display significant cytoplasm retention pattern in HEK293T cells. Interestingly, with these four mutations, the tendency for cytoplasm retention enhances as the extent of deletion increases, suggesting that the loop domainⅡ-Ⅲ region may be essential in determining the membrane trafficking process of human P/Q –type Ca2+ channels. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:40:50Z (GMT). No. of bitstreams: 1 ntu-94-R92441005-1.pdf: 1648242 bytes, checksum: 76fa1bd3e03dea20b465e7148e67f731 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目錄
中文摘要………………………………………………………………………..3 英文摘要………………………………………………………………………..5 導論……………………………………………………………………………..7 材料與方法…………………………………………………………………….21 結果…………………………………………………………………………….29 討論…………………………………………………………………………….41 圖表 圖一 電位控制開關的鈣離子通道的結構………………………………….56 圖二 本論文所研究與EA2相關的六個突變種鈣離子通道在α1A subunit上的位置……………………………………………………………………….57 圖三 細胞Transfection efficiency之估計……………………………………58 圖四 分佈於細胞膜上的正常型鈣離子通道……………………………….59 圖五 評斷鈣離子通道在細胞之表現形態為membrane-dominant、cytoplasm- dominant及cyto-membrane的標準………...……………….………………..60 圖六 突變種鈣離子通道在HEK293T細胞株之分佈形態……………...61-62 圖七 正常型與突變種鈣離子通道在HEK293T細胞株分佈形態之差異…63 圖八 螢光強度定量之分析方法……………………………………………..64 圖九 量化正常型與突變種鈣離子通道蛋白在細胞膜與細胞質的比例分佈……………………………………………………………………………….65 圖十 正常型與突變種鈣離子通道共同表達於HEK293T細胞株………...66 圖十一 在HEK293T細胞株共同表達正常型與突變種鈣離子通道,其正常 型分佈形態之差異………………………………………………………...67-68 圖十二 量化共同表達正常型與突變種鈣離子通道,其正常型鈣離子通道蛋白在細胞膜與細胞質的比例分佈………………………………………….69 圖十三 利用胞器標記確認突變種 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鈣離子通道 | zh_TW |
| dc.subject | 陣發性小腦運動失調 | zh_TW |
| dc.subject | calcium channel | en |
| dc.subject | episodic ataxia | en |
| dc.title | EA2相關突變種之顯性抑制作用對P/Q型鈣離子通道在細胞合成作用之影響 | zh_TW |
| dc.title | Dominant-negative Effects of Episodic Ataxia type II (EA2) mutations on the biogenesis of human P/Q-type Ca2+ channels | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭瓊娟,郭鐘金,符文美,劉宏輝 | |
| dc.subject.keyword | 鈣離子通道,陣發性小腦運動失調, | zh_TW |
| dc.subject.keyword | calcium channel,episodic ataxia, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-08-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
