Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35094
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉宏輝
dc.contributor.authorChin-Yu Shihen
dc.contributor.author施靖宇zh_TW
dc.date.accessioned2021-06-13T06:40:46Z-
dc.date.available2007-08-12
dc.date.copyright2005-08-12
dc.date.issued2005
dc.date.submitted2005-08-01
dc.identifier.citationAbbott NJ, Hughes CC, Revest PA, Greenwood J (1992) Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood-brain barrier. J Cell Sci 103:23-37
Aboudkhil S, Henry L, Zaid A, Bureau JP (2005) Effect of testosterone on growth of P388 leukemia cell line in vivo and in vitro. Distribution of peripheral blood T lymphocytes and cell cycle progression. Neoplasma 52:260-6
Ascherio A, Zhang SM, Hernan MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson's disease in men and women. Ann Neurol 50:56-63
Barbeau A, Roy M, Cloutier T, Plasse L, Paris S (1987) Environmental and genetic factors in the etiology of Parkinson's disease. Adv Neurol 45:299-306
Beck DW, Roberts RL, Olson JJ (1986) Glial cells influence membrane-associated enzyme activity at the blood-brain barrier. Brain Res 381:131-7
Beckett AH, Gorrod JW, Jenner P (1972) A possible relation between pKa 1 and lipid solubility and the amounts excreted in urine of some tobacco alkaloids given to man. J Pharm Pharmacol 24:115-20
Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823:1-10
Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6- tetrahydropyridine. Proc Natl Acad Sci USA 80: 4546-50
Busch AE, Quester S, Ulzheimer JC, Gorboulev V, Akhoundova A, Waldegger S, Lang F, Koepsell H (1996) Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett 395:153-6
Calhau C, Martel F, Soares-da-Silva P, Hipolito-Reis C, Azevedo I (2002) Regulation of [(3)H]MPP(+) transport by phosphorylation/dephosphorylation pathways in RBE4 cells: role of ecto-alkaline phosphatase. Naunyn Schmiedebergs Arch Pharmacol 365:349-56
Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD (2002) Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732-8
Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Schwarzschild MA (2001) Neuroprotection by caffeine and A2A adenosine receptor activation in a model of Parkinson’s disease. J Neurosci 21:1-6
Cormier A, Morin C, Zini R, Tillement JP, Lagrue G (2003) Nicotine protects rat brain mitochondria against experimental injuries. Neuropharmacology 44:642-52
Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39:889-909
Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson's disease. Science 302: 819-22
Di Monte DA (2003) The environment and Parkinson's disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol 2:531-8
el Hafny B, Bourre JM, Roux F (1996) Synergistic stimulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities by retinoic acid and astroglial factors in immortalized rat brain microvessel endothelial cells. J Cell Physiol 167:451-60
Fleming L, Mann JB, Bean J, Briggle T, Sanchez-Ramos JR (1994) Parkinson's disease and brain levels of organochlorine pesticides. Ann Neurol 36:100-3
Fukada A, Saito H, Inui K (2002) Transport mechanisms of nicotine across the human intestinal epithelial cell line Caco-2. J Pharmacol Exp Ther 302:532-8
Gaillard PJ, Voorwinden LH, Nielsen JL, Ivanov A, Atsumi R, Engman H, Ringbom C, de Boer AG, Breimer DD (2001) Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci 12:215-22
Giasson BI, Lee VM (2000) A new link between pestcides and parkinson’s disease. Nat. Neurosci 3:1227-8
Grieb P, Forster RE, Strome D, Goodwin CW, Pape PC (1985) O2 exchange between blood and brain tissues studied with 18O2 indicator-dilution technique. J Appl Physiol 58:1929-41
Grundemann D, Babin-Ebell J, Martel F, Ording N, Schmidt A, Schomig E (1997) Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J Biol Chem 272:10408-13
Grundemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H (1994) Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549-52
Hallman H, Olson L, Jonsson G (1984) Neurotoxicity of the meperidine analogue N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurons in the mouse. Eur J Pharmac. 97:133-6
Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, Niwa M (2004) Effects of hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier. Regul Pept 123:77-83
Hayer-Zillgen M, Bruss M, Bonisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136:829-36
Hernan MA, Takkouche B, Caamano-Isorna F, Gestal-Otero JJ (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson's disease. Ann Neurol 52:276-84
Hernan MA, Zhang SM, Rueda-deCastro AM, Colditz GA, Speizer FE, Ascherio A (2001) Cigarette smoking and the incidence of Parkinson's disease in two prospective studies. Ann Neurol 50:780-6
Howard LA, Miksys S, Hoffmann E, Mash D, Tyndale RF (2003) Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br J Pharmacol 138:1376-86
Irwin I, DeLanney LE, Di Monte D, Langston JW (1989) The biodisposition of MPP+ in mouse brain. Neurosci Lett 101:83-8
Javitch JA, D'Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite 1-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82: 2173-7
Jenner P (2004) Preclinical evidence for neuroprotection with monoamine oxidase-B inhibitors in Parkinson's disease. Neurology 63:S13-22
Jonker JW, Schinkel AH (2004) Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther 308:2-9
Kampa M, Nifli AP, Charalampopoulos I, Alexaki VI, Theodoropoulos PA, Stathopoulos EN, Gravanis A, Castanas E (2005) Opposing effects of estradiol- and testosterone-membrane binding sites on T47D breast cancer cell apoptosis. Exp Cell Res 307:41-51
Kannan R, Chakrabarti R, Tang D, Kim KJ, Kaplowitz N (2000) GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res 852:374-82
Karbach U, Kricke J, Meyer-Wentrup F, Gorboulev V, Volk C, Loffing-Cueni D, Kaissling B, Bachmann S, Koepsell H (2000) Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am J Physiol Renal Physiol 279:F679-87
Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, Ganapathy V (1998) Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem 273:15971-9
Kimura H, Takeda M, Narikawa S, Enomoto A, Ichida K, Endou H (2002) Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J Pharmacol Exp Ther 301:293-8
Koepsell H (1998) Organic cation transporters in intestine, kidney, liver, and brain. Annu Rev Physiol 60:243-66
Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36-90
Koller W, Vetere-Overfield B, Gray C, Alexander C, Chin T, Dolezal J, Hassanein R, Tanner C (1990) Environmental risk factors in Parkinson's disease. Neurology 40:1218-21
Lagrange P, Romero IA, Minn A, Revest PA (1999) Transendothelial permeability changes induced by free radicals in an in vitro model of the blood-brain barrier. Free Radic Biol Med 27:667-72
Langston JW (1998) Epidemiology versus genetics in Parkinson's disease: progress in resolving an age-old debate Ann Neurol 44:S45-52
Lansink M, Koolwijk P, van Hinsbergh V, Kooistra T (1998) Effect of steroid hormones and retinoids on the formation of capillary-like tubular structures of human microvascular endothelial cells in fibrin matrices is related to urokinase expression. Blood 92:927-38
Lawrenson JG, Finn TM, Reid AR, Allt G, Orte C (1999) A comparison of blood-brain barrier and blood-nerve barrier endothelial cell markers. Anat Embryol (Berl) 199:509-17
Lazaruk KD, Wright SH (1990) MPP+ is transported by the TEA+-H+ exchanger of renal brush-border membrane vesicles. Am J Physiol 258:F597-605
Liou HH, Chen RC, Tsai YF, Chen WP, Chang YC, Tsai MC (1996) Effects of paraquat on the substantia nigra of the wistar rats: neurochemical, histological, and behavioral studies. Toxicol Appl Pharmacol 137:34-41
Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC (1997) Environmental risk factors and Parkinson's disease: a case-control study in Taiwan. Neurology 48:1583-8.
Lockman PR, McAfee G, Geldenhuys WJ, Van der Schyf CJ, Abbruscato TJ, Allen DD (2005) Brain uptake kinetics of nicotine and cotinine after chronic nicotine exposure. J Pharmacol Exp Ther 314:636-42.
Mandel S, Weinreb O, Amit T, Youdim MB (2005) Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Brain Res Rev 48:379-87
Martel F, Calhau C, Soares-da-Silva P, Azevedo I (2001) Transport of [3H]MPP+ in an immortalized rat brain microvessel endothelial cell line (RBE 4). Naunyn Schmiedebergs Arch Pharmaco 363:1-10
Martel F, Vetter T, Russ H, Grundemann D, Azevedo I, Koepsell H, Schomig E (1996) Transport of small organic cations in the rat liver. The role of the organic cation transporter OCT1. Naunyn Schmiedebergs Arch Pharmacol 354:320-6
Matarredona ER, Santiago M, Venero JL, Cano J, Machado A (2001) Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem 76:351-60
Maxwell K, Berliner JA, Cancilla PA (1987) Induction of gamma-glutamyl transpeptidase in cultured cerebral endothelial cells by a product released by astrocytes. Brain Res 410:309-14
Nagao M, Takatori T, Wu B, Terazawa K, Gotouda H, Akabane H, Inoue K, Shimizu M (1991) Immunohistochemical localization of paraquat in lung and brain. Med Sci Law 31:61-4
Naylor JL, Widdowson PS, Simpson MG, Farnworth M, Ellis MK, Lock EA (1995) Further evidence that the blood/brain barrier impedes paraquat entry into the brain. Hum Exp Toxicol 14:587-94
Obata T, Aomine M, Inada T, Kinemuchi H (2002) Nicotine suppresses 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in rat striatum. Neurosci Lett 330:122-4
Ohno K, Pettigrew KD, Rapoport SI (1979) Local cerebral blood flow in the conscious rat as measured with 14C-antipyrine, 14C-iodoantipyrine and 3H-nicotine. Stroke 10:62-7
Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson's disease. Ann Rev Neurosci 22:123-44.
Olesen SP (1987) Free oxygen radicals decrease electrical resistance of microvascular endothelium in brain. Acta Physiol Scand 129:181-7
Pardridge WM, Eisenberg J, Yang J (1985) Human blood-brain barrier insulin receptor. J Neurochem 44:1771-8
Prasad BM, Amara SG (2001) The dopamine transporter in mesencephalic cultures is refractory to physiological changes in membrane voltage. J Neurosci 21:7561-7
Roceri M, Molteni R, Fumagalli F, Racagni G, Gennarelli M, Corsini G, Maggio R, Riva M (2001) Stimulatory role of dopamine on fibroblast growth factor-2 expression in rat striatum. J Neurochem 76:990-7
Ross GW, Abbott RD, Petrovitch H, Morens DM, Grandinetti A, Tung KH, Tanner CM, Masaki KH, Blanchette PL, Curb JD, Popper JS, White LR (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283:2674-9
Russ H, Staust K, Martel F, Gliese M, Schomig E (1996) The extraneuronal transporter for monoamine transmitters exists in cells derived from human central nervous system glia. Eur J Neurosci 8:1256-64
Rowland M, Tozer TN (1995) Clinical pharmacokinetics, (William and Wilkins), 3rd ED:165-67
Sayre LM (1989) Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Lett 48:121-49
Schwarzschild MA, Chen JF, Ascherio A (2002) Caffeinated clues and the promise of adenosine A(2A) antagonists in PD. Neurology 58:1154-60
Shang T, Uihlein AV, Van Asten J, Kalyanaraman B, Hillard CJ (2003) 1-methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3. J Neurochem 85:358-67
Sharma SK, Carlson EC, Ebadi M (2003) Neuroprotective actions of Selegiline in inhibiting 1-methyl, 4-phenyl, pyridinium ion (MPP+)-induced apoptosis in SK-N-SH neurons. J Neurocytol 32:329-43
Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O, Shiono H (2003) Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res 976:243-52
Shimizu K, Ohtaki K, Matsubara K, Aoyama K, Uezono T, Saito O, Suno M, Ogawa K, Hayase N, Kimura K, Shiono H (2001) Carrier-mediated processes in blood-brain barrier penetration and neural uptake of paraquat. Brain Res 906:135-42
Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Lopez-Real AM, Labandeira-Garcia JL (2002) Effects of (-)-nicotine and (-)-cotinine on 6-hydroxydopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson's disease. Biochem Pharmacol 64:125-35
Tabakman R, Lecht S, Lazarovici P (2004) Neuroprotection by monoamine oxidase B inhibitors: a therapeutic strategy for Parkinson's disease? Bioessays 26:80-90
Takami K, Saito H, Okuda M, Takano M, Inui KI (1998) Distinct characteristics of transcellular transport between nicotine and tetraethylammonium in LLC-PK1 cells. J Pharmacol Exp Ther 286:676-80
Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, Hosoya K (2004) New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov Today 8:944-54.
Todd MM, Weeks J (1996) Comparative effects of propofol, pentobarbital, and isoflurane on cerebral blood flow and blood volume. J Neurosurg Anesthesiol 8: 296-303
Tomiyama Y, Brian JE Jr, Todd MM (1999) Cerebral blood flow during hemodilution and hypoxia in rats: role of ATP-sensitive potassium channels. Stroke 30:1942-7
Tsukamoto M, Tampo Y, Sawada M, Yonaha M (2000) Paraquat-induced membrane dysfunction in pulmonary microvascular endothelial cells. Pharmacol Toxicol 86:102-9
Uhl GR (2003) Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and parkinsonism. Mov Disord 18:S71-80
Urakami Y, Okuda M, Masuda S, Saito H, Inui KI (1998) Functional characteristics and membrane localization of rat multi-specific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther 287: 800-5
Urakami Y, Okuda M, Saito H, Inui K (2000) Hormonal regulation of organic cation transporter OCT2 expression in rat kidney. FEBS Lett 473:173-6
Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y (2003) Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 63:844-8
Widdowson PS, Farnworth MJ, Simpson MG, Lock EA (1996) Influence of age on the passage of paraquat through the blood-brain barrier in rats: a distribution and pathological examination. Hum Exp Toxicol 15:231-6
Zhang Y, Pardridge WM (2001) Rapid transferrin efflux from brain to blood across the blood-brain barrier. J Neurochem 76:1597-600
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35094-
dc.description.abstract許多環境因子,如重金屬(鐵離子、銅離子以及錳離子)、殺蟲劑(paraquat、organochlorine和carbamate衍生物) 以及其他神經毒素(MPTP和rotenone)和巴金森氏症的發生有關;另外方面也發現保護因子如nicotine、selegiline以及caffeine,可以降低巴金森氏症的發生風險。
本實驗中我們以大腦微血管內皮細胞(SV-ARBEC)培養於transwell或者plate上藉此模擬中樞血腦屏障(Blood and Brain Barrier)利用此培養模式探討部分巴金森氏症的環境因子如何穿透血腦屏障到達中樞神經。我們發現以巴金森氏症神經毒素MPP+在此可透過有機陽離子轉運蛋白organic cation transport 1 (OCT1)(63%)以及多巴胺轉運蛋白dopamine transporter (DAT)(36%)有效進入大腦微血管內皮細胞中,Km和Vmax 分別為11.81±0.95μM、7.55±0.59 pmole/ mg protein /10min,而且MPP+能有效穿透大腦微血管內皮細胞到transwell另一側。
研究其他環境因子於MPP+進入細胞的結果發現nicotine(0.5mM)、selegiline(0.5mM)、paraquat(0.5mM)、tetraethylammonium(0.5mM)、choline(0.5mM)、dopamine(0.5mM)以及rotenone (50µM),可以有效抑制MPP+進入細胞,分別降低為37.78%、21.48%、84.6%、62.82%、84.52%、60.9%、74.5%。而nicotine (0.5mM)存在之下使MPP+之Km從11.81±0.95μM增加為46.73±1.49μM,Vmax則沒有改變,得知nicotine對於MPP+抑制作用為競爭型抑制,此外nicotine也可有效進入大腦微血管細胞內Km、Vmax 分別為29.13±0.13μM、276.12±5.61 pmole/ mg protein /20s,以OCT抑制劑decynium22 (10μM)以及DAT抑制劑GBR12909 (5μM) 研究對於nicotine進入大腦微血管內皮細胞的影響,得知nicotine部分是經由OCT1 (16%)進入細胞但不經由DAT。另外 paraquat (3mM)存在之下使MPP+之Vmax從7.55±0.59 pmole/ mg protein /10min降低為3.43±0.87 pmole/ mg protein /10min,Km則沒有改變,得知paraquat對於MPP+抑制作用為非競爭型抑制。
在本實驗中發現nicotine可和透過競爭性抑制作用和MPP+競爭OCT1進入細胞內,此結論可提供解釋抽煙為何能降低巴金森氏症的發生率,也提供一個相關的研究基礎理論在於防治巴金森氏症上。另外其他環境因子selegiline、TEA、choline、dopamine以及rotenone也可有效抑制MPP+進入細胞,但抑制機轉尚未明確,這將是未來研究方向之一。
zh_TW
dc.description.abstractThe etiology of Parkinson’s disease (PD) is unknown. Epidemiological studies suggest the risk factors of PD associated with environmental factors, such as heavy metals (iron, copper and manganese), pesticides (paraquat, organochlorine and carbamate derivatives) and neurotoxins (MPP+ and rotenone). On the other hand, nicotine, selegiline, and caffeine had been reported as protective factors of PD. The aim of our study was to investigate how environmental factors penetrate blood-brain-barrier (BBB) and enter the central nerve system contributing the pathogenesis of PD.
We used neonatal rat brain endothelial cell (SV-ARBEC) culture on transwell or plate as our experimental model. The results showed that MPP+ can be taken up by SV-ARBEC cell and transported to the other side of the transwell by organic cation transporter (OCT) and dopamine transporter (DAT). Other environmental factors, such as nicotine (0.5mM), selegiline (0.5mM), paraquat (0.5mM), tetraethylammonium (0.5mM), choline (0.5mM), dopamine (0.5mM) and rotenone (50µM) can inhibit the uptake of MPP+ by the SV-ARBEC cells. The inhibitory ratio was 37.78%, 21.48%, 84.6%, 62.82%, 84.52%, 60.9%, and 74.5%, respectively.
Nicotine (0.5mM) increased the Km of MPP+ from 11.81±0.95μM to 46.73±1.49μM without changing Vmax. It showed a competitive pattern for the inhibition of nicotine. OCT inhibitor (decynium22, 10µM), but not for DAT inhibitor (GBR 12909, 5µM), inhibited the accumulation of nicotine into SV-ARBEC cell (16%) suggestting that nicotine can enter the SV-ARBEC cell via OCT but not DAT .
Paraquat (3mM) decreases the Vmax of MPP+ from 7.55±0.59 to 3.43±0.87 pmole/mg protein/10min without changing Km, indicating the non-competitive inhibitory mechanism.
Our study suggested that nicotine effectively reduces the entrance of MPP+ into SV-ARBEC cell by a competitive manner. These results may explain the possibility that smoking probably decrease the risk of PD.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:40:46Z (GMT). No. of bitstreams: 1
ntu-94-R92443015-1.pdf: 817360 bytes, checksum: d7ffe99427eb12c3429147948717e932 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents英文摘要……………………………………………….….02
中文摘要……………………………………………….… 04
第一章 緒論………………………………………….….06
第二章 實驗目的…………………………………….….20
第三章 實驗材料與方法………………………………..21
第四章 實驗結果…………………………………….….32
第五章 討論…………………………………………....49
第六章 結論……………………………………………..64
第七章 參考文獻………………………………………..65
第八章 圖表與說明……………………………………..74
dc.language.isozh-TW
dc.title引起巴金森氏症之相關因子的血腦屏障穿透之研究zh_TW
dc.titleTransport of nicotine and paraquat across BBB and its implication to Parkinson’s diseaseen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.coadvisor林君榮
dc.contributor.oralexamcommittee符文美,陳秀熙,孔繁璐
dc.subject.keyword巴金森氏症,zh_TW
dc.subject.keywordNULLen
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2005-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
798.2 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved