Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35088
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃榮山
dc.contributor.authorChien-Hsun Chenen
dc.contributor.author陳建勳zh_TW
dc.date.accessioned2021-06-13T06:40:37Z-
dc.date.available2005-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-08-01
dc.identifier.citation[1] M. E. Kassner, S. Nemat-Nasser, Z. Suo, G. Bao, J. C. Barbour, L. C. Brinson, H. Espinosa, H. Gao, S. Granick, P. Gumbsch, K.S. Kim, W. Knauss, L. Kubin, J. Langer, B. C. Larson, L. Mahadevan, A. Majumdar, S. Torquato, and F. Swol, “New directions in mechanics”, Mechanics of Marerials, Vol. 37 (2005), pp. 231-259.
[2] R. Raiteri, M. Grattarola, H. J. Butt, and P. Skladal, “Micromechanical cantilever-based biosensors”, Sensors and Actuators B, Vol. 79 (2001), pp. 115-126.
[3] R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J.K. Gimzewski, E. Meyer, and H. J. Guntherodt, “Surface stress in the self-assembly of alkanethiols on gold”, Science, Vol. 276, pp.2021-2024.
[4] J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E.
Meyer, H. J. Guntherodt, and C. Gerber, J. K. Gimzewski1, “Translating biomolecular recognition into nanomechanics”, Science, Vol. 288 (2000), pp. 316-318.
[5] K. M. Hansen, H. F . Ji, G. Wu, R. Datar, R. Cote, A. Majumdar, and T. Thundat, “Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches”, Anal. Chem., Vol. 73 (2001), pp. 1567-1571.
[6] A. M. Moulin, S. J. O`Shea, and M. E. Welland, “Microcantilever - based biosensors”, Ultramicroscopy, Vol. 82 (2000), pp. 23-31.
[7] G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Marjumdar,“Bioassay of prostate-specific antigen(PSA) using microcantilevers”, Nature Biotechnology, Vol. 19 (2001) , pp. 856-860.
[8] S. Cherian, A. Mehta, and T. Thundat, “Investigating the mechanical effects of adsorption of Ca2+ ions on a silicon nitride microcantilever surface”, Langmuir , Vol. 18 , pp. 6935-6939.
[9] S. Cherian, and T. Thundat, “Determination of adsorption-induced variation in the spring constant of a microcantilever”, Applied Physics Letters, Vol. 80 (2002), pp. 2219-2221.
[10] K. Liu ,and H. F. Ji, “Detection of Pb2+ using a hydrogel swelling microcantilever sensor”, Analytical Sciences, Vol. 20 (2004), pp. 9-11.
[11] Y. Zhang, S. P. Venkatachalan, H. Xu, X. Xu, P. Joshi, H. F. Ji ,and M. Schulte,“Measurement of membrane receptor binding for label-free drug discovery”, Biosensors and Bioelectronics, Vol. 19 (2004), pp. 1473-1478.
[12] R. Marie , H. Jensenius, J. Thaysen, C. B. Christensen, and A. Boisen, “Adsorption Kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors”, Ultramicroscopy, Vol. 91 (2002), pp. 29-36.
[13] J. H. Lee, K. H. Yoon, K. S. Hwang, J. Park, S. Ahn ,and T. S. Kim,“Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein”, Biosensors and Bioelctronics, Vol. 20 (2004), pp. 269-275.
[14] T. J. Huang , B. Brough, C. M. Ho, Y. Liu, A. H. Flood, P. A. Bonvallet, H. R. Tseng , J. F. Stoddart, M. Baller, and S. Magonov, “A nanomechanical device based on linear molecular motors”, Applied Physics Letters, Vol. 5 (2004), pp. 5391-5393.
[15] G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions”, PNAS, Vol. 98 (2001), pp. 1560-1564.
[16] M. Veen , W. Norde ,and M. C. Stuart,“Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme”, Colloids and Surfaces B, Vol. 35 (2004), pp. 33-40.
[17] S.E. Moulton, J. N. Barisci, A. Bath, R. Stella ,and G. G. Wallace, “Investigation of protein adsorption and electrochemical behavior at a gold electrode”, Journal of colloid and interface science, Vol. 261 (2003), pp.312-319.
[18] C. Ziegler, “Cantilever-based biosensors”, Anal. Bioanal. Chem. Vol. 379 (2004), pp.946-959.
[19] M. Ferencik, “Handbook of immunochemistry”, (1993).
[20] C. C. Gyenge, O. Tenstad, and H. Wiig, “In vivo determination of steric and electrostatic exclusion of albumin in rat skin and skeletal muscle”, J. Physiol, Vol. 552 (2003), pp. 907-916.
[21] http://www.path.cam.ac.uk/~mrc7/igs/mikeimages.html.
[22] http://www-ermm.cbcu.cam.ac.uk/99000484h.htm.
[23] 張輝盛,“新型高靈敏度之微型懸臂樑生物感測器應用於免疫分析法之研究”
[24] M. Alvarez, A. Cale, J. Tamayo, L. M. Lechuga, A. Abad, and A. Montoya,“Development of nanomechanical biosensors for detection of the pesticide DDT”, Biosensors and Bioelectronics, Vol. 18 (2003), pp. 649-653.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35088-
dc.description.abstract微懸臂樑生化感測器主要結合了光學、微機電和流體系統三種技術,即是當生物分子薄膜形成在微懸臂樑表面時,用光槓桿原理偵測微懸臂樑的彎曲。此感測器的優點在靈敏度高、不需螢光標記、可偵測小分子反應的訊號、將來有平行化檢測的潛力且靠半導體製程大量製造節省成本。
本實驗在此感測器之研究領域,首次利用蛋白質等電位點的概念結合電場操控技術,希望達成操控蛋白質佈植的功能。本研究設計了三組實驗,分別在淨電荷帶正電之免疫球蛋白G1(IgG1)吸附於微懸臂樑表面時通入-10V、0V和+10V不同的電壓。實驗結果顯示-10V形成的電場的確可以吸引更多的蛋白質在吸附微懸臂樑表面,造成較大的彎曲量;相反的,+10V形成的電場的確可以排斥蛋白質避免吸附在微懸臂樑表面,造成較小的彎曲量。本實驗成功地做到了利用電場吸引和排斥蛋白質,證實可用電場決定蛋白質附著於微懸臂樑表面的密度,更可連續量測微懸臂樑的彎曲量,了解整段免疫檢測的過程。
本研究期望吸引的功能將來可應用在蛋白質晶片上,減少低濃度珍貴蛋白的使用量,另一方面當醫療產業大量製造蛋白質晶片時,可減少檢測用蛋白質的使用量。期望排斥的現象將來可應用在多個反應區的選擇性佈植,可將每個反應區附著上不同的檢測用蛋白。
現今生物醫學的發展不斷進步與許多創新技術的開發息息相關,其中最重要的莫過於人類對於微奈米尺度下科學和技術的掌握,而微機電技術正是切入這些問題核心的好方法,我們也用此技術發展微懸臂樑生化感測器。
zh_TW
dc.description.abstractIt is becoming gradually obvious that the high-throughput recognition and quantification of bio-molecules are of great importances in biomedical detection and disease diagnosis. With the growing interest and fast development in bio-nanotechnology, bio-sensing tools have been moving towards miniaturization, high sensitivity, and great promise in low-cost as well. A novel electric field-manipulated biosensor of label-free biomolecular recognition based on the nano-mechanics transduction in a micro-fabricated cantilever has been developed. Use of inherent protein charge not in an isoelectric point state is proven to be driven in an electric field, commonly seen in electrophoreses processes. Several electric field-manipulated experiments were conducted between the electrodes of -10V, +10V, and no voltage applications. It was found that the sensing area of the electrode with -10 volt was collectively deposited with the net positive protein IgG1 in a buffer solution of pH ~ 5. The significant surface stresses arise in sensing area as a negative electrode, while most proteins are, in contrast, repelled out of the sensing area applied in positive electrode. With the protein isoelectric point characteristics, the attraction and repulsion of proteins have been demonstrated in manipulation under electric fields across the electrodes with the device sensing element. In protein attraction demonstration, the device is capable of highly sensitive antigen detection by collecting most antibodies in a far dilute concentration. In addition, both use of attraction and repulsion in manipulation show the potential of selective deposition and local repulsion in specific sensing surface among multiple disparate sensing agents.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:40:37Z (GMT). No. of bitstreams: 1
ntu-94-R92543025-1.pdf: 3697460 bytes, checksum: 78762266adddf9215310c43ab2d5a944 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 Ⅰ
英文摘要 Ⅲ
致謝 Ⅳ
目錄 Ⅶ
圖目錄 ⅩⅡ
表目錄 ⅩⅤ
第一章 導論 1
1.1研究動機 1
1.2文獻回顧 2
1.2.1最先的突破 2
1.2.2 在去氧核醣核酸(DNA)方面的研究 3
1.2.3在蛋白質方面的研究 4
1.2.4 在離子檢測的研究 7
1.2.5 在藥物檢測方面的研究 9
1.2.6 壓阻方法的量測 10
1.2.7共振方法的量測 13
1.2.8 用微懸臂樑作奈米級致動器 14
1.2.9 微懸臂樑彎曲的原因探討 15
1.2.10蛋白質吸附受靜電力作用的影響 16
1.2.11控制金電極表面電位影響蛋白質吸附的研究 17
1.3研究方法. 18
第二章 基礎理論 19
2.1微懸臂樑感測器主要應用領域之理論 19
2.1.1雙層材料的熱能感測 19
2.1.2共振式的微質量感測器 20
2.1.3量測表面應力改變的生物分子薄膜感測器 22
2.2 分子膜產生表面應力機制 24
2.2.1採用Majumdar提出的解釋法 24
2.2.2皖基硫醇跟金鍵結的過程 25
2.2.3免疫球蛋白G1(IgG1)與皖基硫醇鍵結的過程 26
2.2.4乙胺醇與皖基硫醇-COOH端鍵結過程 27
2.2.5免疫球蛋白G1抗體與免疫球蛋白G1辨識過程 27
2.2.6 用氨基乙酸(Glycine)洗去免疫球蛋白G1抗體的過程 28
2.3 光槓桿方法量測表面應力 28
2.3.1光槓桿法量測懸臂樑彎曲量 28
2.3.2用Stoney方程式將彎曲量轉換成表面應力 28
2.4 電場對蛋白質的控制 29
2.4.1蛋白質等電位點(isoelectric point)的定義 29
2.4.2蛋白質的表面電荷 29
2.4.3電場控制蛋白質 30
2.4.4用電場控制蛋白質選擇性佈植的構想 30
第三章 實驗架設 32
3.1 晶片設計 32
3.1.1微懸臂樑的設計 33
3.1.2具有電極之微懸臂樑感測晶片製作 35
3.1.2.1材料準備 35
3.1.2.2定義懸臂樑位置 35
3.1.2.3製作金屬電極 36
3.1.2.4溼蝕刻製作懸浮之微懸臂樑 37
3.1.3聚二甲基矽氧烷(PDMS)流道製作 39
3.1.4晶片和流道接合 41
3.2光場架設 43
3.2.1光場基礎理論 43
3.2.2光場設計 44
3.2.3光學元件 46
3.2.2光場架設過程 47
3.3流體系統 48
3.4系統整合 49
第四章 免疫反應分析 51
4.1實驗抗原抗體介紹 51
4.2蛋白質表面固定及反應技術 54
4.2.1晶片清洗 54
4.2.2自組裝分子薄膜 56
4.2.3自組裝分子薄膜的活化 56
4.2.4免疫球蛋白G1(IgG1)的注入 57
4.2.5自組裝分子的鈍化 57
4.2.6免疫球蛋白G1抗體辨識免疫球蛋白G1 58
4.2.7洗去免疫球蛋白G1抗體 58
第五章 實驗結果與分析 59
5.1實驗材料準備 59
5.1.1晶片準備 59
5.1.2 緩衝液準備 60
5.1.3生物和化學材料準備 60
5.2實驗流程 60
5.4未加電場之反應 62
5.5加負電壓吸附之反應 65
5.6加正電壓排斥之反應 66
5.7三者的比較 67
5.7.1免疫球蛋白G1(IgG1)佈植的比較 68
5.7.2免疫球蛋白G1抗體辨識免疫球蛋白G1的比較 69
5.7.3完整曲線的比較 70
第六章 總結 71
6.1結論 71
6.2未來展望 72
參考文獻 73
dc.language.isozh-TW
dc.subject蛋白質佈植zh_TW
dc.subject微懸臂樑生化感測器zh_TW
dc.subject電場操控zh_TW
dc.subjectmicro-cantilever biosensoren
dc.subjectprotein depositionen
dc.subjectelectric field manipulationen
dc.title利用電場操控蛋白質佈植於高靈敏度之微懸臂樑生化感測器zh_TW
dc.titleUse of Electric Field Manipulation in Protein Deposition for Highly-Sensitive Micro-Cantilever Biosensoren
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李世元,林世明
dc.subject.keyword微懸臂樑生化感測器,電場操控,蛋白質佈植,zh_TW
dc.subject.keywordmicro-cantilever biosensor,electric field manipulation,protein deposition,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2005-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
3.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved