請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35078完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王惠鈞(Andrew H.-J. Wang) | |
| dc.contributor.author | Min-Feng Hsu | en |
| dc.contributor.author | 許敏峯 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:40:22Z | - |
| dc.date.available | 2007-08-26 | |
| dc.date.copyright | 2005-08-26 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-08-01 | |
| dc.identifier.citation | Anand, K., Palm, G.J., Mesters, J.R., Siddell, S.G., Ziebuhr, J. and Hilgenfeld, R. (2002) Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. Embo J, 21, 3213-3224.
Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R. and Hilgenfeld, R. (2003) Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 300, 1763-1767. Barrette-Ng, I.H., Ng, K.K., Mark, B.L., Van Aken, D., Cherney, M.M., Garen, C., Kolodenko, Y., Gorbalenya, A.E., Snijder, E.J. and James, M.N. (2002) Structure of arterivirus nsp4. The smallest chymotrypsin-like proteinase with an alpha/beta C-terminal extension and alternate conformations of the oxyanion hole. J Biol Chem, 277, 39960-39966. Bergmann, E.M., Mosimann, S.C., Chernaia, M.M., Malcolm, B.A. and James, M.N. (1997) The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J Virol, 71, 2436-2448. Blanchard, J.E., Elowe, N.H., Huitema, C., Fortin, P.D., Cechetto, J.D., Eltis, L.D. and Brown, E.D. (2004) High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase. Chem Biol, 11, 1445-1453. Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G.L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr, 54 (Pt 5), 905-921. Chan, H.L., Tsui, S.K. and Sung, J.J. (2003) Coronavirus in severe acute respiratory syndrome (SARS). Trends Mol Med, 9, 323-325. Chang, H.C. and Chang, G.G. (2003) Involvement of single residue tryptophan 548 in the quaternary structural stability of pigeon cytosolic malic enzyme. J Biol Chem, 278, 23996-24002. Chen, L., Gui, C., Luo, X., Yang, Q., Gunther, S., Scandella, E., Drosten, C., Bai, D., He, X., Ludewig, B., Chen, J., Luo, H., Yang, Y., Yang, Y., Zou, J., Thiel, V., Chen, K., Shen, J., Shen, X. and Jiang, H. (2005) Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol, 79, 7095-7103. Chen, L.R., Wang, Y.C., Lin, Y.W., Chou, S.Y., Chen, S.F., Liu, L.T., Wu, Y.T., Kuo, C.J., Chen, T.S. and Juang, S.H. (2005) Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors. Bioorg Med Chem Lett, 15, 3058-3062. Chou, C.Y., Chang, H.C., Hsu, W.C., Lin, T.Z., Lin, C.H. and Chang, G.G. (2004) Quaternary structure of the severe acute respiratory syndrome (SARS) coronavirus main protease. Biochemistry, 43, 14958-14970. Collaborative Computational Project, N. (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr, 50, 760-763. De Clercq, E. (2002) Strategies in the design of antiviral drugs. Nat Rev Drug Discov, 1, 13-25. Dougherty, W.G. and Semler, B.L. (1993) Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev, 57, 781-822. Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H.R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R.A., Berger, A., Burguiere, A.M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J.C., Muller, S., Rickerts, V., Sturmer, M., Vieth, S., Klenk, H.D., Osterhaus, A.D., Schmitz, H. and Doerr, H.W. (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 348, 1967-1976. Eickmann, M., Becker, S., Klenk, H.D., Doerr, H.W., Stadler, K., Censini, S., Guidotti, S., Masignani, V., Scarselli, M., Mora, M., Donati, C., Han, J.H., Song, H.C., Abrignani, S., Covacci, A. and Rappuoli, R. (2003) Phylogeny of the SARS coronavirus. Science, 302, 1504-1505. Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B., Pei, J., Liu, Y., Chen, J. and Lai, L. (2004) Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem, 279, 1637-1642. Fouchier, R.A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G.J., van den Hoogen, B.G., Peiris, M., Lim, W., Stohr, K. and Osterhaus, A.D. (2003) Aetiology: Koch's postulates fulfilled for SARS virus. Nature, 423, 240. Gao, F., Ou, H.Y., Chen, L.L., Zheng, W.X. and Zhang, C.T. (2003) Prediction of proteinase cleavage sites in polyproteins of coronaviruses and its applications in analyzing SARS-CoV genomes. FEBS Lett, 553, 451-456. Gorbalenya, A.E., Donchenko, A.P., Blinov, V.M. and Koonin, E.V. (1989) Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett, 243, 103-114. Hsu, J.T., Kuo, C.J., Hsieh, H.P., Wang, Y.C., Huang, K.K., Lin, C.P., Huang, P.F., Chen, X. and Liang, P.H. (2004) Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV. FEBS Lett, 574, 116-120. Hsu, M.F., Kuo, C.J., Fang, J.M., Shie, J.J., Chang, K.T., Chang, H.C., Chou, C.C., Ko, T.P., Shr, H.L., Chang, G.G., Wu, Y.T., AH, J.W. and Liang, P.H. (2005) Understanding the maturation process and inhibitor design of SARS-CoV 3CLpro from the crystal structure of C145A in a product-bound form. J Biol Chem. Hsyu, P.H., Pithavala, Y.K., Gersten, M., Penning, C.A. and Kerr, B.M. (2002) Pharmacokinetics and safety of an antirhinoviral agent, ruprintrivir, in healthy volunteers. Antimicrob Agents Chemother, 46, 392-397. Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J.A., Lim, W., Rollin, P.E., Dowell, S.F., Ling, A.E., Humphrey, C.D., Shieh, W.J., Guarner, J., Paddock, C.D., Rota, P., Fields, B., DeRisi, J., Yang, J.Y., Cox, N., Hughes, J.M., LeDuc, J.W., Bellini, W.J. and Anderson, L.J. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 348, 1953-1966. Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Laman, J.D., de Jong, T., van Doornum, G., Lim, W., Ling, A.E., Chan, P.K., Tam, J.S., Zambon, M.C., Gopal, R., Drosten, C., van der Werf, S., Escriou, N., Manuguerra, J.C., Stohr, K., Peiris, J.S. and Osterhaus, A.D. (2003) Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet, 362, 263-270. Kuo, C.J., Chi, Y.H., Hsu, J.T. and Liang, P.H. (2004) Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate. Biochem Biophys Res Commun, 318, 862-867. Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Yung, M.Y., Leung, C.B., To, K.F., Lui, S.F., Szeto, C.C., Chung, S. and Sung, J.J. (2003) A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med, 348, 1986-1994. Leng, Q. and Bentwich, Z. (2003) A novel coronavirus and SARS. N Engl J Med, 349, 709. Lin, C.W., Tsai, C.H., Tsai, F.J., Chen, P.J., Lai, C.C., Wan, L., Chiu, H.H. and Lin, K.H. (2004) Characterization of trans- and cis-cleavage activity of the SARS coronavirus 3CLpro protease: basis for the in vitro screening of anti-SARS drugs. FEBS Lett, 574, 131-137. Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., Khattra, J., Asano, J.K., Barber, S.A., Chan, S.Y., Cloutier, A., Coughlin, S.M., Freeman, D., Girn, N., Griffith, O.L., Leach, S.R., Mayo, M., McDonald, H., Montgomery, S.B., Pandoh, P.K., Petrescu, A.S., Robertson, A.G., Schein, J.E., Siddiqui, A., Smailus, D.E., Stott, J.M., Yang, G.S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T.F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G.A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R.C., Krajden, M., Petric, M., Skowronski, D.M., Upton, C. and Roper, R.L. (2003) The Genome sequence of the SARS-associated coronavirus. Science, 300, 1399-1404. Matthews, D.A., Dragovich, P.S., Webber, S.E., Fuhrman, S.A., Patick, A.K., Zalman, L.S., Hendrickson, T.F., Love, R.A., Prins, T.J., Marakovits, J.T., Zhou, R., Tikhe, J., Ford, C.E., Meador, J.W., Ferre, R.A., Brown, E.L., Binford, S.L., Brothers, M.A., DeLisle, D.M. and Worland, S.T. (1999) Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci U S A, 96, 11000-11007. Matthews, D.A., Smith, W.W., Ferre, R.A., Condon, B., Budahazi, G., Sisson, W., Villafranca, J.E., Janson, C.A., McElroy, H.E., Gribskov, C.L. and et al. (1994) Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell, 77, 761-771. McQueney, M.S., Amegadzie, B.Y., D'Alessio, K., Hanning, C.R., McLaughlin, M.M., McNulty, D., Carr, S.A., Ijames, C., Kurdyla, J. and Jones, C.S. (1997) Autocatalytic activation of human cathepsin K. J Biol Chem, 272, 13955-13960. McRee, D.E. (1999) XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. J Struct Biol, 125, 156-165. Mosimann, S.C., Cherney, M.M., Sia, S., Plotch, S. and James, M.N. (1997) Refined X-ray crystallographic structure of the poliovirus 3C gene product. J Mol Biol, 273, 1032-1047. Myint, S.H. (1995) The Coronaviridae. Plenum Press, New York. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray Differection Data Collected in Oscillation Mode. Sweet, R. M., Academic, New York. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol., 276, 307-326. Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Yee, W.K., Yan, W.W., Cheung, M.T., Cheng, V.C., Chan, K.H., Tsang, D.N., Yung, R.W., Ng, T.K. and Yuen, K.Y. (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 361, 1319-1325. Phan, J., Zdanov, A., Evdokimov, A.G., Tropea, J.E., Peters, H.K., 3rd, Kapust, R.B., Li, M., Wlodawer, A. and Waugh, D.S. (2002) Structural basis for the substrate specificity of tobacco etch virus protease. J Biol Chem, 277, 50564-50572. Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bankamp, B., Maher, K., Chen, M.H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J.L., Chen, Q., Wang, D., Erdman, D.D., Peret, T.C., Burns, C., Ksiazek, T.G., Rollin, P.E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A.D., Drosten, C., Pallansch, M.A., Anderson, L.J. and Bellini, W.J. (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 300, 1394-1399. Rotonda, J., Nicholson, D.W., Fazil, K.M., Gallant, M., Gareau, Y., Labelle, M., Peterson, E.P., Rasper, D.M., Ruel, R., Vaillancourt, J.P., Thornberry, N.A. and Becker, J.W. (1996) The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol, 3, 619-625. Rueckert, R.R. and Wimmer, E. (1984) Systematic nomenclature of picornavirus proteins. J Virol, 50, 957-959. Someya, Y., Takeda, N. and Miyamura, T. (2005) Characterization of the norovirus 3C-like protease. Virus Res, 110, 91-97. Tanner, J.A., Watt, R.M., Chai, Y.B., Lu, L.Y., Lin, M.C., Peiris, J.S., Poon, L.L., Kung, H.F. and Huang, J.D. (2003) The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5' to 3' viral helicases. J Biol Chem, 278, 39578-39582. Thiel, V., Herold, J., Schelle, B. and Siddell, S.G. (2001) Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol, 75, 6676-6681. van der Hoek, L., Pyrc, K., Jebbink, M.F., Vermeulen-Oost, W., Berkhout, R.J., Wolthers, K.C., Wertheim-van Dillen, P.M., Kaandorp, J., Spaargaren, J. and Berkhout, B. (2004) Identification of a new human coronavirus. Nat Med, 10, 368-373. Wallace, A.C., Laskowski, R.A. and Thornton, J.M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng, 8, 127-134. Woo, P.C., Lau, S.K., Chu, C.M., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Poon, R.W., Cai, J.J., Luk, W.K., Poon, L.L., Wong, S.S., Guan, Y., Peiris, J.S. and Yuen, K.Y. (2005) Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol, 79, 884-895. Wu, C.Y., Jan, J.T., Ma, S.H., Kuo, C.J., Juan, H.F., Cheng, Y.S., Hsu, H.H., Huang, H.C., Wu, D., Brik, A., Liang, F.S., Liu, R.S., Fang, J.M., Chen, S.T., Liang, P.H. and Wong, C.H. (2004) Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci U S A, 101, 10012-10017. Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G.F., Anand, K., Bartlam, M., Hilgenfeld, R. and Rao, Z. (2003) The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A, 100, 13190-13195. Zhang, K.E., Hee, B., Lee, C.A., Liang, B. and Potts, B.C. (2001) Liquid chromatography-mass spectrometry and liquid chromatography-NMR characterization of in vitro metabolites of a potent and irreversible peptidomimetic inhibitor of rhinovirus 3C protease. Drug Metab Dispos, 29, 729-734. Ziebuhr, J., Snijder, E.J. and Gorbalenya, A.E. (2000) Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol, 81, 853-879. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35078 | - |
| dc.description.abstract | 嚴重急性呼吸道症候群為由一新型人類冠狀病毒 (SARS-CoV) 所感染且快速傳染的疾病。此病毒在宿主體內之成熟需藉由一主要蛋白酶—3C-like (3CL)蛋白酶。3CL蛋白酶主要負責的工作為剪切病毒基因所轉錄出來的蛋白鍊並促使3CL蛋白酶本身之熟成 (二聚體的形成)進而啟動病毒基因的複製作用。因此3CL蛋白酶成為對抗病毒之藥物設計時的重要標的物。本論文包含了此蛋白酶之蛋白質晶體結構及一與產物相結合之C145A突變株之結構。藉由此產物結合之結構與一系列研究方法,推論出3CL蛋白質二聚體形成之模式,同時透過基質序列之專一性作為對抗此一冠狀病毒之藥物設計基礎。最後,利用rhinovirus藥物-AG7088作為開端進行對抗SARS 藥物設計。本論文結合了生物資訊之基質專一性資料,酵素抑制及病毒抑制細胞實驗加上四個抑制劑與蛋白酶之蛋白質結晶結構設計出一個能有效對抗SARS病毒之抑制劑-TG-0205221。最後,建立了一個快速、有效、且節省成本之以結構為基礎之藥物設計模式。 | zh_TW |
| dc.description.abstract | Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel human coronavirus. Viral maturation requires a main protease (3CLpro) to cleave the virus-encoded polyproteins. In this study, the dimeric 3-D structure of the C145A mutant protease shows that the active site of one protomer binds with the C-terminal six amino acids of the protomer from another asymmetric unit, mimicking the product-bound form and suggesting a possible mechanism for maturation. This product-bound structure also provides insights into the maturation process of the SARS 3CLpro from the polyprotein and design of new structure-based inhibitors. For structure-based drug design, AG7088 (an anti-rhinivirus drug) is the lead compound for the design of anti-SARS 3CL protease inhibitor. Substrate based bioinformatics, enzyme based, anti-viral cell-based assay and four inhibitor-protease complex crystal structures established a potent anti-SARS protease inhibitor-TG-0205221. Finally, fast, efficient and cost-saving chemical synthesis strategy for structure based anti-viral protease drug design is established. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:40:22Z (GMT). No. of bitstreams: 1 ntu-94-D89242006-1.pdf: 12634066 bytes, checksum: f63f0e3f492199527d59a2738044fb50 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | CONTENTS
CHINESE ABSTRACT……….……………….…………………………i ENGLISH ABSTRACT…….……………...............…………………….ii ACKNOWLEDGEMENTS…..………..………………..……………… CONTENTS….…………………………......…….…………..…………iii LIST OF FIGURES………………….......………………..…………… vii LIST OF TABLES……………….......…………………….……………..x ABBREVIATIONS…...………………...………………….……………xi CHAPTER 1 Introduction.………………………….................……………. 1 1.1 Virus…….………………..…………..…………………1 1.2 Virus classification.....…...………….…………………..1 1.3 RNA virus……………….....………..…........………….3 1.4 Coronaviridae…………………………………………..4 1.4.1 Classification of Coronaviridae……………….……4 1.4.2 Morphology of coronavirus………….……………..5 1.4.3 Genome of coronavirus……………….…………….6 1.4.4 Replication of coronavirus………………….………7 1.4.5 Diseases of coronavirus……………………………8 1.4.6 Human coronavirus………………………………...9 1.5 Severe Acute Respiratory Syndrome (SARS)………...10 1.5.1 Introduction of SARS……………….…………….10 1.5.2 Where did the SARS virus come from?...................11 1.6 3C and 3C-like proteases……………………………...13 1.7 Virus protease maturation……………………………..16 1.8 3C(L)protease drug design……………………………16 2 Materials and methods……..……………….……..……….18 2.1 Materials..... ….………………….……..…..…………18 2.2 Cloning……...…….………………...……….………..18 2.3 Protein expression and purification….…..……….…...18 2.4 Crystallization of wild-type and C145A SARS 3CLpro.21 2.4.1 Crystallization of wild-type SARS 3CLpro………..21 2.4.2 Crystallization of SARS 3CCLpro C145A………...21 2.5 Data collection and process of wild-type and C145A 3CLpro…………………………………………………21 2.6 Structure solutions and refinement of wild-type and C145A3CLpro…………………………………….……22 2.7 Maturation assay………………………………………22 2.8 Analytical Ultracentrifuge Experiments………………23 2.9 Chemical synthesis……………………………………24 2.10 Inhibition assay………………………………………...24 2.11 Co-crystallization of SARS 3CLpro-inhibitor complex...25 2.12 Data and structure of SARS 3CLpro-inhibitor complex..25 2.13 Structure solution and refinement of SARS 3CLpro- inhibitor complex…………………………………….26 2.14 Human coronavirus HCoV 229E viral load reduction Assay…………………………………………………..26 2.15 SARS anti-viral activity measurements..………………27 2.16 Graphics………………………………………………..28 3 Result………………………………………………………..30 3.1 Overall structure of the SARS-CoV wild-type……..…30 3.2 Overall structure of SARS-CoV C145A 3CLpro……....30 3.3 Autoprocessing of tagged SARS-CoV 3CLpro during lysate preparation……………………………………...31 3.4 Facilitated processing…………………………………32 3.5 Analysis of wild-type and mutant proteases…………..32 3.6 Processing intermediate-like, product-bound C145A Structure………………………………………………..33 3.7 Comparison of 3CLpro structures……………………...34 3.8 Substrate specificity initializes the peptide-like inhibitor Design…………………………………………………35 3.9 AG7088 as the lead compound for SARS 3CLpro inhibitor design……………………………………….36 3.10 TG-0203770 in complex with SARS 3CL protease……36 3.11 Structure based drug design evidenced by protease- inhibitor complex structure……………………………37 3.12 A potent anti-SARS inhibitor-TG-0205221……………38 3.13 Comparison of product-bound form and TG-0205221- SARS 3CLpro structures………………………………..41 3.14 Human coronavirus HCoV 229E viral load reduction Assay………………………………………………….42 3.15 SARS anti-viral activity measurements……………….43 3.16 Strategy for anti-viral protease inhibitor design……….44 4 Discussion…..….....................................................………….45 REFERENCES…........…………………….…………………...……….80 APPENDIXES……………………..........................................................91 Appendix 1….................................................................................92 Appendix 2….................................................................................93 LIST OF FIGURES Figure 1.1 Classification of RNA virus………………………………..3 Figure 1.2 Morphology of coronavirus………………………………..5 Figure 1.3 Structure of the coronavirus viron…………………………6 Figure 1.4 Replication of coronavirus…………………………………8 Figure 1.5 EM of SARS-CoV…………………………………………11 Figure 1.6 SARS is from palm civets…………………………………12 Figure 1.7 Evolution tree of coronavirus……………………………...12 Figure 1.8 Genome of SARS-CoV……………………………………13 Figure 1.9 Catalytic mechanism of 3CL protease…………………….15 Figure 3.1 Sequences surrounding the N-terminal and C-terminal cutting sites of 3CLpro in different coronaviruses…...…..58 Figure 3.2 Crystal structure of the wild-type of 3CLpro………….……59 Figure 3.3 Crystal structure of the C145A 3CLpro…………………….60 Figure 3.4 Product-bounded 3CLpro structure…………………………61 Figure 3.5 SARS-CoV recombinant proteases………………………..62 Figure 3.6 SDS-PAGE analysis of the maturation of SARS coronavirus recombinant proteases……………………………………..63 Figure 3.7 Facilitated processing of Trx-10aa-C145A-10aa-GST by the active 3CL protease………………………………………..64 Figure 3.8 AUC experiments of wild-type SARS 3CLpro…………….65 Figure 3.9 Stereo view of the electron density map of C145A 3CLpro..66 Figure 3.10 Molecular interactions of the active site residues of promoter B with the C-terminal residues of promoter B’……………67 Figure 3.11 Superposition of 3CLpro active sites and inhibitors………..68 Figure 3.12 Proposed scheme of SARS 3CLpro maturation…………….69 Figure 3.13 Inhibitor structures of SARS 3CLpro……………………….70 Figure 3.14 Stereo view of the electron density map of the inhibitors in the active site residues of 3CLpro…………………………..71 Figure 3.15 The SARS 3CL protease dimer structure complexed with TG-0205221…………………….………………………...72 Figure 3.16 Stereo view of the TG-0205221 inhibitor bound with the protease shown by elkectrostatic potential………………...73 Figure 3.17 Superposition of 3CLpro-TG-005221 and 3CLpro-product structures…………………………………………………...74 Figure 3.18 Schematic representation of key interactions between SARS 3CLpro and TG-0205221………………………………......75 Figure 3.19 Viral load reduction on HCoV 229E by TG-0205221…….76 Figure 3.20 Plaque forming assay on HCoV 229E by TG-0205221……77 Figure 3.21 Viral load reduction on SARS-CoV by TG-0205221……...78 Figure 3.22 Anti-SARS coronavirus activity from CPE (cytopathic effect) on Vero E6 cells……………………………………………79 LIST OF TABLES Table 3.1 Data collection and refinement statistics for wild-type and C145A3CLpro……………………………….…………….50 Table 3.2 Inter- and inra-interactions of SARS 3CLpro dimmers……...51 Table 3.3 Substrate specificity of SARS-CoV 3CL protease…………52 Table 3.4 X-ray data collection and refinement statistics for the four protease-inhbiitor complexes………………………………53 Table 3.5 List of peptide-mimetic compounds with 3CLpro enzyme- and cell-based activity and HCoV-229E cell-based activity..54 Figure 3.6 Activity of a 3CL protease inhibitor on SARS coronavirus, TG-0205221, and the analogue of a 3C protease inhibitor on rhinovirus, AG708855………………………………………55 Figure 3.7 Plasma stability of TG-0205221……………………………56 | |
| dc.language.iso | en | |
| dc.subject | 晶體結構 | zh_TW |
| dc.subject | 嚴重急性呼吸道症候群 | zh_TW |
| dc.subject | 蛋白酶 | zh_TW |
| dc.subject | 藥物設計 | zh_TW |
| dc.subject | 3CL protease | en |
| dc.subject | crystal structure | en |
| dc.subject | structure based drug design | en |
| dc.subject | SARS | en |
| dc.title | 嚴重急性呼吸道症候群3CL蛋白酶之生成與以結構為基礎之藥物設計 | zh_TW |
| dc.title | Maturation and Structure Based Drug Design of SARS 3CL protease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張文章(Wen-Chang Chang),梁博煌(Po-Huang Liang),孟子青(Tzu-Ching Meng),馬徹(Alex Che Ma) | |
| dc.subject.keyword | 嚴重急性呼吸道症候群,蛋白酶,藥物設計,晶體結構, | zh_TW |
| dc.subject.keyword | SARS,3CL protease,structure based drug design,crystal structure, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-08-01 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 12.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
