Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35072
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭天佐(Tien Tzou Tsong)
dc.contributor.authorI-JAN WANGen
dc.contributor.author王怡然zh_TW
dc.date.accessioned2021-06-13T06:40:12Z-
dc.date.available2005-08-09
dc.date.copyright2005-08-09
dc.date.issued2005
dc.date.submitted2005-08-01
dc.identifier.citationReferences
1. Richard Feynman, gave on December 29th 1959 at the annual meeting of the American Physical Society
2. G. Binning, and H. Rohrer, Scanning tunneling Microscopy. Helv. Phys. Acta., 55, 726 (1982)
3. M. M.. Ozer et al, Quantum stability and reentrant bilayer growth of atomically smooth Pb films on semiconductor substrates. (private communication, to be published.)
4. T. E. Madey et al, Faceting induced by ultrathin metal films on W(111) and Mo(111): Structure, reactivity, and electronic properties. Surf.Rev. Lett, 3, 1315 (1996)
5. K. Song et al, Faceting phase transition of Mo(111) induced by Pd, Au, and oxygen overlayers. Surf. Sci., 327, 17 (1995)
6. C. Z. Dong et al, Platinum-induced morphology and reactivity changes on W(111). J. Chem. Phys., 99, 9172 (1993)
7. T. E. Madey et al, Morphological instability by ultrathin films on W(111). Surf. Sci., 287, 826 (1993)
8. S. P. Chen, Theoretical studies of ultrathin film-induced faceting on W(111) surface. Surf. Sci. Lett., 274, L619 (1992)
9. Tsu-Yi Fu et al, Method of creating a Pd-covered single-atom sharp W pyramidal tip: Mechanism and energetics of its formation, Phys. Rev. B, 64, 113401 (2001)
10. H. Kuo et al, Preparation and characterization of single atom-tips”, Nano Lett. 4, 2379 (2004).
11. William F. Brunner, Jr., and Thomas H. Batzer, Practical vacuum techniques, Robert E. Krieger Pub. Co., (1965)
12. D.P. Woodruff, T.A. Delchar, Modern techniques of surface science, Cambridge Solid State Science Series
13. D. M. Eigler and E.K. Schweizer, Positioning single atoms with a scanning tunnelling microscope, Nature 344, 524 - 526 (05 April 1990);
14. M. Bode, M. Getzlaff, and R. Wiesendanger, Spin-polarized vacuum tunneling into the exchange-split surface state of Gd(0001), Phys. Rev. Lett. 81, 4256 (1998)
15. Hideaki Ohnishi, Yukihito Kondo & Kunio Takayanagi, Quantized conductance through individual rows of suspended gold atoms, Nature 395, 780 - 783 (22 October 1998)
16. C. J. Chen, Introduction to scanning tunneling microscopy. Oxford Univ. Press, New York, (1993)
17. See, for example, articles in Physics of Low Dimensional Semiconductor Structure, edited by P. Butcher, N.H. March, and M. P. Tsoi (Plenum, New York, 1992).
18. J. Walz et al, Appl. Phys. Lett., 73, 2579 (1998)
19. A. Grossmann et al, Phys. Rev. Lett., 77, 127 (1996)
20. J. Tersoff and R.M. Tromp, Phys. Rev. Lett., 70, 2782 (1993)
21. A. R. Smith et al, Formation of atomically flat silver films on GaAs with a “silver mean” quasi periodicity. Science, 273, 226 (1996)
22. L. Gavioli et al, Novel growth of Ag Island on Si(111): Plateaus with a singular height. Phys. Rev. Lett., 82, 129 (1999)
23. K. Budde et al, Uniform, self-organized, seven-step height Pb/Si(111)-(7x7) island at low temperatures. Phys. Rev. B, 61, R10, 602 (2000)
24. W. B. Su et al, Formation of multi-layer two dimensional Pb islands on Si (111) 7x7 at low temperature: From nucleation to growth, Phys. Rev. B 68 033405 (2003)
25. S. H. Chang, Electronic growth of Pb island on Si (111) at low temperatures. Phys. Rev. B, 65, 245401 (2002)
26. W. B. Su, et al, Correlation between Quantized Electronic States and Oscillatory Thickness Relaxations of 2D Pb Islands on Si (111)-(7x7), Phys. Rev. Lett., vol. 86, 22, 5116 (2001)
27. I. B. Altfeder, V. Narayanamurti, and D. M. Chen, Imaging subsurface reflection phase with quantized electron. Phys. Rev. Lett., 88, 206801 (2002)
28. I. B. Altfeder, K. A. Matveev, and D. M. Chen, Electron fringes on a quantum wedge. Phys. Rev. Lett., 78, 2815 (1997)
29. Z. Zhang, Q. Niu and C. Shih, “Electronic growth” of metallic overlayers on semiconductor substrates. Phys. Rev. Lett., 80, 5381 (1998)
30. M. Jalochowskii and E. Bauer J. Appl. Phys., 63, 4501 (1988)
31. P. Czoschke et al, Quantum beating patterns observed in the energetics of Pb film nanostructures. Phys. Rev. Lett., 93, 36103 (2004)
32. H. Hong et al, Alternating layer and island growth of Pb on Si spontaneous quantum phase separation. Phys. Rev. Lett., 90, 76104 (2003)
33. S. H. Overbury, The adsorption of ethylene on Mo(111):Evidenced for a subsurface carbon. Surf. Sci., 184, 319 (1987)
34. F. Keller et al, J. Electro-chem. Soc., 100, 411 (1953)
35. G. E. Thompson et al, Nature, 727, 433 (1978)
36. H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268, 1466 (1995)
37. O. Jessensky, F. Muller, and U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173 (1998)
38. H. Masuda, K. Yada, A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 37, L1340 (1998)
39. K. Nielsch et al, Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett. 2, 677 (2002)
40. H. Masuda, K. Yada, A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 37, L1340 (1998)
41. H. Masuda et al, Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett., 71, 2770 (1997)
42. C. Y. Liu, A. Datta, Y. L. Wang, Ordered anodic alumina nanochannels on focused-ion-beam-patterned aluminum surfaces. Appl. Phys. Lett., 78, 120 (2001)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35072-
dc.description.abstractTwo kinds of self-organized surface nanostructures are investigated with scanning tunneling microscopy in the experiments reported in this thesis.

The first experiment was performed at low temperature (ranging 55K~ 140K) to explore the growth behavior of atomic flat Pb films on incommensurate Pb/Si (111)-1×1 substrate. This is the first systematic investigation of this system at such a low temperature. While the growth of Pb film showed typical features of quantum size effect, certain growth behaviors different from its counterparts at higher temperature, such as the layer-by-layer mode of growth, was observed. The low temperature environment also enabled us to focus on the quantum size effect, which is hindered in the higher temperature regime.
In the second part of the thesis, the possibility of selective faceting on Mo (111) surface is explored through series of experiments accounted in this chapter. Facet is considered to be a self-assembled surface nanostructure, whose formation is due to the minimization of surface energy. Inspired by previous experience that carbon contaminated Mo (111) substrate is incapable of faceting, we deposited ethylene (C2H4) on Mo (111) surface to form stable Molybdenum carbide that is only a few atomic layers thick and capable of blocking facet formation on the substrate. An ion beam collimator made of anodic porous alumina was fabricated and tested for guiding the ion bombardment to make recognizable pattern of faceting/non-faceting interface on the sample. We expect to see facets occur only at the area that is sputtered if this is achieved. Preliminary attempts and achievements are reported in this part of the thesis, which showed some positive signs of the scheme that we have proposed.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:40:12Z (GMT). No. of bitstreams: 1
ntu-94-R91222034-1.pdf: 2061694 bytes, checksum: 19bfb4c9d6eecf373944354289a5179a (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAcknowledgements
Abstract
Table of contents
List of figures captions
Chapter 1: Introduction---------------------------------------------1
Chapter 2: Instrumentation------------------------------------------4
2.1 UHV system------------------------------------------ 4
2.2 Scanning Tunneling Microscopy (STM) -----------------4
2.2.1 Constant current mode ---------------------------- 6
2.2.2 Constant height mode------------------------------ 7
2.2.3 Current image tunneling spectroscopy (CITS) -------7
2.3 UHV evaporator --------------------------------------8
Chapter 3: Growth Behaviors of 2-D Pb Films on Incommensurate Pb/Si (111)-1x1 at Low Temperature-----------------------9
3.1 Introduction ----------------------------------------9
3.2 Experiment -----------------------------------------12
3.2.1 More on the instrumentation ----------------------12
3.2.2 Experimental -------------------------------------12
3.3. Results and discussion ----------------------------16
3.3.1. Growth Characteristics --------------------------16
3.3.2. Temperature and higher coverage effect ----------22
3.3.3.Layer-by-Layer growth at low temperature caused by limited mobility ---------------------------------------25
3.3.4 Film growth below 5 ML ---------------------------28
3.3.5 Conclusion ---------------------------------------29
Chapter4: Selective Faceting on Mo (111) by Surface Carbonization and Mask-enhanced Ion Bombardment --------30
4.1 Introduction ---------------------------------------30
4.2 More on instrumentation and basic experimental Procedures ---33
4.2.1 The UHV chamber ----------------------------------33
4.2.2 Room temperature STM system ----------------------33
4.2.3 Rear View LEED---the Low Energy Electro Diffraction Optical Systems ----------------------------------------34
4.2.4 Ion bombardment gun system -----------------------35
4.2.5 Molybdenum Sample --------------------------------35
4.2.6 Tip preparation ----------------------------------36
4.2.7 Clean Mo (111) by electron bombardment -----------36
4.2.8 Faceting on Mo (111) surface ---------------------40
4.2.9 Porous alumina mask ------------------------------41
4.3 Experiments ----------------------------------------42
4.3.1 Carbonization of Mo (111) and the non-faceting surfac --------------------------------------------------------42
4.3.2 Fabrication of porous alumina mask ---------------52
4.3.3 Ion bombardment through porous alumina mask-------60
4.4 Preliminary results, discussion, and future works --68
Chapter 5: Conclusion----------------------------------------------73
References----------------------------------------------75
dc.language.isoen
dc.title以掃描穿隧式顯微術針對奈米自行組織表面結構之研究zh_TW
dc.titleInvestigating Self-organized Surface Nanostructures with Scanning Tunneling Microscopyen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張嘉升,蘇維彬
dc.subject.keyword量子尺寸效應,奈米表面結構,zh_TW
dc.subject.keywordFaceting,Quantum size effect,Pb film,STM,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2005-08-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
2.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved