請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35055
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王大銘(Da-Ming Wang) | |
dc.contributor.author | Yu-Li Lin | en |
dc.contributor.author | 林育立 | zh_TW |
dc.date.accessioned | 2021-06-13T06:39:48Z | - |
dc.date.available | 2007-08-04 | |
dc.date.copyright | 2005-08-04 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-08-02 | |
dc.identifier.citation | Adams, M. J., R. McKeown, and A. Whall, “A Micromechanical Model for the Confined Uni-axial Compression of an Assembly of Elastically Deforming Spherical Particles,” J. Phys. D: Appl. Phys., 30, 912-920 (1998).
Ahmed, N., and D. K. Sunada, “Nonlinear Flow in Porous Media,” J. Hydraulics Div., 95, 1847-1857(1969) Atsumi, K., and T. Akiyama, “A Study of Cake Filtration-Formulation as a Stefan Problem,” J. Chem. Eng. Japan, 8, 487-492(1975) Akiyama, T. and K. Atsumi, “Mathematical Formulation of Cake Filtration for Deformable Solid and Uniqueness of a Similarity Solution,” Chem. Eng. Sci., 42(11),2790-2792(1987) Andrei, D. C., B. J. Briscoe, P. F. Luckham, and D. R. Williams, “The deformation of microscopic gel particles,” J. de Chimie Physique et de Physico-Chimie Biologique, 93(5), 960-976 (1996). Arthur, J. R. F., T. Dunstarn, and G. G. Enstad, “Determination of the Flow Function by Means of a Cubic Plane Strain Tester,” Int. J. Bulk Storage Silos., 1(2), 7(1985) Briscoe, B. J., K. K. Liu, and D. R Williams, “Adhesive Contact Deformation of a Single Microelastomeric Sphere,” J. Colloid Interface Sci., 200, 256-264(1998) Carman, P. C., “Fluid Flow through Granular Beds,” Trans. Inst. Chem. Eng., 15, 150-166(1937) Carman, P. C., “Permeability of Saturated sands, Soils and Clays,” J. Agri. Sci., 29, 262-273(1939) Chase, G. G., and M. S. Willis, “Compressive Cake Filtration,” Chem. Eng. Sci., 47(6), 1373-1381(1992) Cheetham P. S. J., “Physical Studies on the Mechanical Stability of Columns of Calcium Alginate Pellets Containing Entrapped Microbial Cells,” Enzyme Microb. Technol., 1,183-188 (1979a). Colby, C. B., B. K. O’Neill and A. P. J. Middelberg, “A Modified Version of the Volume-Averaged Continuum Theory to Predict Pressure Drop across Compressible Packed Beds of Sepharose Big-Beads SP,” Biotechnol. Prog., 12, 92-99(1996) Davies, P. A., and B. J. Bellhouse, “Permeability of Beds of Agarose-based Particles,” Chem. Eng. Sci., 44(2), 452-455(1989) DeHoff, R. T., and F. N. Rhines, Quantitative Microscopy, McGraw-Hill Pub. Co., New York(1968) Endo, Y., and M. Alonso, “Physical Meaning of Specific Cake Resistance and Effects of Cake Properties in Compressible Cake Filtration,” Filtr. Sep., 38(7), 42-46(2001) Ergun, S., and A. A. Orning, “Fluid Flow through Randomly Packed Columns and Fluidized Bed,” Ind. Eng. Chem., 41(6), 1179-1184(1949) Ergun, S., “Fluid Flow Through Paced Columns,” Chem. Eng. Prog., 48(2), 89-94(1952) Evans, I. D., and A. Lips, ” Concentration Dependence of the Linear Elastic Behavior of Mode Microgel Dispersions,” J. Chem. Soc. Faraday. Trans., 86(20), 3413-3417(1990) Fathi-Najafi, M., H. Theliander, “Determination of Local Filtration Properties at Constant Pressure,” Sep. Technol., 5, 165-178(1995) Feng, W. W., and W. H. Yang, “On the Contact Problem of an Inflated Spherical Nonlinear Membrane,” J. Appl. Mech., 40(1), 209-214(1973) Fischer, L., Gel Filtration Chromatography, Elsevier/North-Holland Inc., (1980) Fischmeister, H. F., E. Arzt, and L. R. Olsson, “Particle Deformation and Sliding during Compaction of Spherical Powders: a Study by Quantitative Metallography,” Powder Metal., 4, 179(1978) Flory, P. J., and Jr. J. J. Rehber, Chem. Phys., 12, 212 (1944). Foumeny, E. A., and F. Benyahia, “Predictive Characterization of Mean Voidage in Packed Bed,” Heat Recovery Systems & CHP, 11(2-3), 127-130(1991) Foumeny, E. A., H. A. Moallemi, C. McGreavy, and A. A. Castro, “Elucidation of Mean Voidage in Packed Bed,” Can. J. Chem. Eng., 69(4), 1010-1015(1991) Foumeny, E. A., and S. Roshani, “Mean Voidage of Packed Bed of Cylindrical Particles,” Chem. Eng. Sci., 46(9), 2363-2364(1991) Foumeny, E. A., F. Benyahia, J. A. A. Castro, H. A. Moallemi, and S. Roshani, “Correlations of Pressure drop in Packed Bed Taking into Account the Effect of Confining Wall,” Int. J. Heat Mass. Transfer, 36(2), 536-540(1993) Foumeny, E. A., A. Kulkarni, S. Roshani, and Vatani, “Elucidation of Pressure Drop in Packed Bed Systems,” Appl. Therm. Eng., 16(3), 195-202(1996) Frith, W. J., and A. Lips., “The Rheology of Concentrated Suspensions of Deformable Particles,” Advances in Colloid and Interface Science, 61, 161 (1995). German, R. M., Particle Packing Characteristics, Metal Powder Industries Federation, Princeton, New Jersey(1989) Gilmour, T. H. J., “ A method of Staining Sephadex Particles for the Study of Filter Feeding Systems in Animals,” Staining Technol., 54(5), 281-282(1979) Handley, D., and P. J. Heggs, “Momentum and Heat Transfer Mechanisms in Regular Shapes Packings,” Trans. Inst. Chem. Engrs., 46, 251(1968) Happel, J., and H. Brenner, Low Reynolds Number Hydrodynamics, Chap. 8, Prentice-Hall(1965) Hicks, R. E., “Pressure Drop in Packed Beds of Spheres,” Ind. Eng. Chem. Fund., 9(3), 500-502(1970) Hughes, B. D., L. R. White, “ ’Soft’ Contact Problems in Linear Elasticity,” Q. J. Mech. Appl. Math., 32, 445-471(1979) Hwang, K. J., C. L. Hsueh, “Dynamic Analysis of Cake Properties in Microfiltration of Soft Colloids,” J. Mem. Sci., 214, 259-273(2003) Hwang, K. J., J. C. Perng, W. M. Lu, “Microfiltration of Deformable Submicron Particles,” J. Chem. Eng. Jpn., 34(8), 1017-1025(2001) Johnson, K. L., Contact Mechanics, Cambridge Univ. Press, New York, NY(1985) Jönsson, K. A., and B. T. L. Jönsson, “Fluid Flow in Compressible Porous Media I: Steady-State Conditions,” AIChE J., 38(9), 1340-1348 (1992a). Jönsson, K. A., and B. T. L. Jönsson, “Fluid Flow in Compressible Porous Media II: Dynamic Behavior,” AIChE J., 38(9), 1349-1356 (1992b). Keener, R. N., J. E. Maneval, K. C. E. Östergren, and E. J. Fernandez, “Mechanical Deformation of Compressible Chromatographic Columns,” Biotechnol. Prog., 18, 587-596(2002) Lee, D. J., S. P. Ju, J. H. Kwon, and F. M. Tiller, “Filtration of Highly Compactible Filter Cake: Variable Internal Flow Rate,” AIChE J., 46(1), 110-118(2000) Leu, W. F., M. H. Lee, and F. M. Tiller, “Cake Compactibility – A Rigorous Definition,” Proc. Of the 6th World Filtration Congress, Nagoya, Japan, 148-153(1993) Liu, K.K., D. R. Williams, and B. J. Briscoe, “Compressive Deformation of a Single Microcapsule,” Phys. Rev. E, 54(6), 6673-6680(1996) Liu, K.K., D. R. Williams, and B. J. Briscoe, “The Large Deformation of a Single Micro-elastomeric Sphere,” J. Phys. D: Appl. Phys. v 31(3), 294-303 (1998). Lou, X., N. G. Barton, K. H. Gebauer, and A. N. Stokes, “Finite Element Analysis of a Compressible Packed Chromatographic Bed,” Proc. of 6th World Cong. of Chem. Eng., Melbourne, Australia, 23-27(2001) Lu, W. M., and F. M. Tiller, “A Modified Definition of Average Specific Filtration Resistance for a Variable Pressure Filtration,” Bulletin of the College of Eng., NTU, n.13, 1969 Lu, W. M., and K. J. Hwang, “Mechanism of Cake Formation in Constant Pressure Filtration,” Sep. Technol., 3(3), 122(1993) Lu, W. M., Y. P. Huang, and K. J. Hwang, “Methods to Determine the Relationship Between Cake Properties and Solid Compressive Pressure,” Sep. Pur. Tech. 13, 9-23 (1998a). Lu, W. M., Y. P. Huang, and K. J. Hwang, “Dynamic Analysis of Constant Rate Filtration Data ,” J. Chem. Eng. Japan., 31(6), 969-976 (1998b). Lu, W. M., K. L. Tung, S. M. Hung, J. S. Shiau, and K. J. Hwang, “Compression of Deformable Gel Particles,” Powder Technol., 116(1), 1-12(2001a) Lu, W. M., K. L. Tung, S. M. Hung, J. S. Shiau, and K. J. Hwang, “Constant Pressure Filtration of Mono-dispersed Deformable Particle Slurries,” Sep. Sci. Technol., 36(11), 2355-2383(2001b) MacDonald, I. F., M. S. El-Sayed, K. Mow, and F. A. L. Dillien, “Flow Through Porous Media-the Ergun Equation Revisited,” Ind. Eng. Chem. Fundam., 18(3), 199-208(1979) McCarthy, A. A., D. G. O’Shea, N. T. Murray, P. K. Walsh, and G. Foley, ”The Effect of Cell Morphology on Dead-End Filtration of the Dimorphic Yeast Kluyveromyces marxianus var. marxianus NRRLy2415,” Biotechnol. Prog., 14, 279-285(1998) McCarthy, A. A., H. Conroy, P. K. Walsh, and G. Foley, “The Effect of Pressure on the Specific Resistance of Yeast Filter Cakes during Dead-End Filtration in the Range 30-500kPa,” Biotechnol. Techniques., 12(12), 909-912(1998b) McCarthy, A. A., P. Gilboy, P. K. Walsh, and G. Foley, “Characterisation of Cake Compressibility in Dead-End Microfiltration of Microbial Suspensions,” Chem. Eng. Comm., 173, 79-90(1999) McCarthy, A. A., P. K. Walsh, and G. Foley, “Characterising the Packing and Dead-End Filter Cake Compressibility of the Polymorphic Yeast Kluyveromyces marxianus var. marxianus NRRLy2415,” J. Mem. Sci., 198, 87-94(2002) Meeten, G. H., “Filtration of Deformable Particles in Suspension,” In R. H. Ottewill, & A. R. Rennie, Modern Aspects of Colloidal dispersions. Dordrecht: Kluwer. Meeten, G. H., “Septum and Filtration Properties of Rigid and Deformable Particles,” Chem. Eng. Sci.,55., 1755-1767(2000) Meireles, M., M. Clifton, P. Aimar, “Filtration of Yeast Suspension: Experimental Observations and Modeling of Dead-end Filtration with a Compressible Cake,” Desalination, 147,19-23(2002) Meireles, M., C. Molle, M. J. Clifton, P. Aimar, “The Origin of High Hydraulic Resistance for Filter Cakes of Deformable Particles: Cell-bed Deformation or Surface-layer Effect?,” Chem. Eng. Sci., 59, 5819-5829(2004) Metha, D., and M. C. Hawley, “Wall Effect in Packed Column,” I&EC Proc. Des. Dev., 8(2), 280-282(1969) Moresi, Mauro and Roberto Rancini, “Mechanical Properties of Alginate Gels: Empirical Characterization,” Journal of Food Engineering, 39(4), p 369-378 (1999) Nakakura, H., M. Sambuichi, H. Ishitoku, and K. Osaka, “Filtration Mechanism of Gel Particle Slurry,” J. Chem. Eng. Jpn, 34(7), 862-868(2001). Ouwerx, C., C. N. Velings, M. M. Mestdagh, and M. A. V. Axelos, “Physico-Chemical Properties and Rheology of Alginate Gel Beads Formed with Various Divalent Cations,” Polymer Gels and Networks, 6, 393-408 (1998). Östergren, K. C. E., and A. C. Trägårdh, “Numerical Study of Two-Dimensional Compaction Flow and Dispersion in a Chromatographic Column,” Numer. Heat Transfer, Part A, 32, 247(1997) Östergren, K. C. E., A. C. Trägårdh, G. G. Enstad, and J. Mosby, “Deformation of a Chromotographic Bed during Steady-State Liquid Flow,” AIChE J., 44(1), 2-12(1998) Pharmacia Fine Chemicals, Gel Filtration: Theory and Practice, Uppsala, Sweden(1979) Porath, J., and F. Flodin, “Gel Filtration: A Method for desalting and Group Separation,” Nature, 183, 1657(1959) Rushton, A., A. S. Ward, and R. G. Holdich, Solid-Liquid Filtration and Separation Technology, VCH Verlagsgesellschaft mbH, 1996 Ruth, B. F., G. H. Montillon, and R. E. Motonna, “Studies in Filtration:I. Critical Analysis of Filtration Theory,” Ind. Eng. Chem., 25(1), 76-82(1933) Ruth, B. F., “Studies in Filtration:III. Derivation of General Filtration Equations,” Ind. Eng. Chem., 27(6), 708-723(1935) Scheidegger, A. E., The Physics of Flow through Porous Media, The Macmillan Co., New York, 125-131(1960) Shima, S., Y. Tatara, M. IIO, C. Shu, and J. C. Lucero, “Large Deformations of a Rubber Sphere under Diametral Compression (Part 2: Experiments on Many Rubber Materials and Comparisons of Theories with Experiments),” JSME, Series A, 36(2), 197-205 (1993). Shirato, M., M. Sambuichi, H. Kato, and T. Aragaki, “Internal Flow Mechanism in Filter Cakes,” AIChE J., 15, 405-409(1969) Skouri, R., F. Schosseler, J.P. Munch, and S.J. Candau, “Swelling and Elastic Properties of Polyelectrolyte Gels,” Macromolecules, 28(1), p 197-210 (1995) Smiles, D. E., “Compressive Cake Filtration-a Comment,” Chem. Eng. Sci., 48(19), 3431-3434 (1993). Sorensen, P. B. and J. A. Hansen, “Extreme Solid Compressibility in Biological Sludge Dewatering,” Water Sci. and Tech., 28(1), 133 (1993). Sparrow, E. M., A. L. Loeffler, JR., “Longitudinal Laminar Flow between Cylinders Arranged in Regular Array,” AIChE J., 5(3), 325-330(1959) Stamatakis, K., and C. Tien, “Cake Formation and Growth in Cake Filtration,” Chem. Eng. Sci., 46(8), 1917-1933(1991) Sullivan, R. R., K. L. Hertel, “The Flow of Air through Porous Media,” J. Appl. Phys., 11, 761-765(1940) Sullivan, R. R., “Specific Surface Measurements on Compact Bundles of Parallel Fibers,” J. Appl. Phys., 13, 725-730(1942) Suresh L. Shenoy, “The Effect of Uniaxial Deformation on Swollen Gel,” Polymer Gels and Network, 6, 455-470 (1998) Takigawa, Toshikazu, “Simultaneous Swelling and Stress Relaxation Behavior of Uniaxially Stretched Polymer Gels,” Polymer Journal, 25(9), (1993) Takigawa, Toshikazu, “Time Dependent Poisson's Ratio of Polymer Gels in Solvent,” Polymer Journal, 26(2), (1994) Takigawa, T., “Osmotic Poisson's Ratio and Equilibrium Stress of Poly(acrylamide) Gels,” Polymer Journal, 28(11), 1012-1013(1996) Takigawa, T., T. Yamawaki, K. Takahashi, and T. Masuda, “Change in Young's Modulus of Poly(N-isopropylacrylamide) Gels by Volume Phase Transition,” Polymer Gels and Networks, 5(6), p 585-589, (1997) Tatara, Y., “Extensive Theory of Force-Approach Relations of Elastic Spheres in Compression and in Impact,” J. Eng. Mat. Technol., 111, 163-168(1989) Tatara, Y., “On Compression of Rubber Elastic Sphere Over a Large Range of Displacements-Part 1:Theoretical Study,” J. Eng. Mat. Technol., 113, 285-291(1991) Tatara, Y., S. Shima, and J. C. Lucero, “On Compression of Rubber Elastic Sphere Over a Large Range of Displacements-Part 2:Comparison of Theory and Experiment,” J. Eng. Mat. Technol., 113, 292-295(1991) Tatara, Y., “Large Deformations of a Rubber Sphere under Diametral Compression (Part 1: Theoretical Analysis of Press Approach, Contact Radius and Lateral Extension),” JSME, Series A, 36(2), 190-196 (1993). Theliander, H. and M. Fathi-Najafi, “Simulation of the Build-up of a Filter Cake,” Filtr. Sep., 417-421(1996) Timoshenko, S. P., and J. N. Goodier, Theory of Elasticity, 3rd Edition, McGraw-Hill, 1986 Tiller, F. M., “The Role of Porosityin FiltrationII: Analytical Equations for Constant Rate Filtration,” Chem. Eng. Prog.. 51, 280-290 (1955). Tiller, F. M. and H. Cooper, “The Role of Porosity in Filtration V: Porosity Variation in Filter Cakes,” AIChE J., 8(4), 445-449 (1962). Tiller, F. M. and T. C. Green, “The Role of Porosity in Filtration IX: Skin Effect with Highly Compressible Materials,” AIChE J., 19, 1266-1269 (1973). Tiller, F. M. and T. G. Cleveland, D. J. Lee, “Theory of Filtration of Highly Compactable Biosolids,” Water Sci. Tech., 34(3-4), 299-306 (1996). Tiller, F. M., R. Lu, J. H. Kwon , and D. J. Lee, “Variable Flow Rate in Compactible Filter Cakes,” Wat. Res., 33(1), 15-22(1999) Tosun, I., “Mathematical Formulation of Cake Filtration for Deformable Solid Particles,” Chem. Eng. Sci., 40(4), 673-674 (1985). Tosun, I., U. Yetis, M. S. Willis, and G. G. Chase, “Specific Cake Resistance: Myth or Reality?,” Wat. Sci. Tech., 28(19), 91-101(1993) Tung, K. L, S. Wang, W. M. Lu, and C. H. Pan, “In Situ Measurement of Cake Thickness Distribution by a Photointerrupt Sensor,” J. Mem. Sci., 190, 57-67(2001) Ugural, A. C., Mechanics of Material, McGraw-Hill Inc.(1994) Wakeman, R. J., “A Numerical Solution of the Differential Equations Describing the Formation of Air Flow in Compressible Filter Cake,” Trans. Inst. Chem. Eng., 56, 258-265(1978) Wakeman, R. J., “The Formation and Properties of Apparently Incompressible Filter Cake under Vaccum on Downward Facing Surface,” Trans. I. Chem. Eng., 59, 260-270(1981) Willis, M. S. and I. Tosun, “A Rigorous Cake Filtration Theory,” Chem. Eng. Sci., 35, 2427-2438 (1980). Wu, Y., “Analysis of Constant-Pressure Filtration,” Chem. Eng. Sci., 49(6), 831-836 (1994). Yelshin, A., “Classification of Porous Media with Through Pore Channels,” Filtra. Sep., 31(3), 243(1994) Yoffe, E. H., “Modified Hertz Theory for Spherical indentation,” Phil. Mag. A, 50(6), 813-828(1984) Zydney, A. L, W. M. Saltzman, and C. K. Colton, “Hydraulic Resistance of Red Cell Beds in an Unstirred Filtration Cell,” Chem. Eng. Sci., 44, 147-159(1989) 黃雲鵬, 濾餅特性及其經驗式之探討, 碩士論文, 國立台灣大學化學工程研究所(1994) 黃雲鵬,濾餅特性質之量測及其應用,博士論文,國立台灣大學化學工程研究所(1998) 童國倫,可變形粒子之過濾與濾布堵塞機構之研究,博士學位論文,國立台灣大學化學工程研究所(1998) 洪淑美,可變形粒子過濾之研究,碩士學位論文,國立台灣大學化學工程研究所(1998) 蕭嘉賢,可變形粒子過濾機構之研究,碩士學位論文,國立台灣大學化學工程研究所(1999) 史頌平,黏彈性凝膠粒子之濾餅過濾,碩士學位論文,國立台灣大學化學工程研究所 (2000) 林育立,可壓縮軟粒子過濾行為之研究,國立台灣大學化學工程學研究所 (2001) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35055 | - |
dc.description.abstract | 本研究的主要宗旨,在於探討體積可變之可壓縮軟粒子受機械壓壓縮下之特性,以及此類物質在流體流動系統當中之流力行為。因此,本研究首先以單顆及二維平面上規則排列之多顆不可壓縮及可壓縮軟粒子,進行機械壓縮實驗,並推導出描述圓形軟粒子變形行為的圓球及橢圓壓縮模式,以分析單一軟粒子受壓後之型態;此外也將模式延伸至推估軟粒子於二維平面排列下,受壓時粒子間的孔隙度變化。實驗及分析結果顯示所推導之壓縮模式,可合理地描述軟粒子受壓下型態相關物理量(體積,表面積)之改變,並經比較而知不可壓縮軟粒子因受壓下具較大擴張量,而與可壓縮軟粒子之行為有所差異。
其次,為探討含可壓縮軟粒子之流體流動系統的行為,本研究採恆床壓力降及恆率操作方式,對可壓縮Ca-alginate粒子堆積床進行流力實驗,並以考量粒子體積可變而修正Ergun方程式,使其適於計算流體流經可壓縮軟粒子床之壓力降;同時,以此式為基礎,建立一套動態分析方法,運用於計算操作過程中堆積床之結構變化及水力行為。實驗結果顯示,恆壓力降操作下的床高有回彈之現象,與恆率操作下床高不斷下降的行為迥異;而由動態分析之結果可瞭解,若不考量粒子體積可變的影響,則在估算可壓縮軟粒子堆積床之床高變化上,將與實驗值間有相當大的偏差。 本研究第三部份,為探討含可壓縮軟粒子泥漿在恆壓及恆率操作下之過濾行為,同時針對童(1998)及Lu et al.(2001b)所提出之可變形軟粒子過濾行為之動態解析方法加以修正,針對其中的黏彈性模式,則引入粒子體積可變之概念,以對含可壓縮軟粒子泥漿之過濾行為加以解析。實驗結果顯示由於粒子在操作過程當中持續的壓縮行為,在恆壓及恆率過濾實驗曲線上,皆顯示了斜率不同的轉折,而反映出不同階段時粒子壓縮率過濾行為的影響。其次經由動態分析之結果,可瞭解雖不同過濾操作方式對於濾餅局部性質分佈有不同形式的影響,但亦可發現在同一系統壓力下,恆壓及恆壓操作所得之局部孔隙度與固體壓縮壓力之關係有相當一致的分佈。此外,以動態模擬所得之濾性值,反證恆壓過濾實驗之過濾曲線,結果顯示在過濾曲線尚未陡升前有合理的計算結果,但在轉折上升後的行為,則仍須有更進一步理論的探討。 | zh_TW |
dc.description.abstract | The performance of the filtration of the compressible soft particle slurries is systematically studied in the following three aspects:
First of all, the uni-axial compression of a single compressible(volume variable) or incompressible(volume invariable) soft particle without or with surrounded by other particles are studied to obtain the compression models for characterizing the properties of the soft particles in a deformation course. It is shown that the incompressible soft particle expands more significantly during compression and therefore interacts with the surrounding ones more effectively than the compressible soft particle. The results calculated by the models can properly describe the compression behaviors of the soft particles as well. Secondly, a method of dynamic analysis based on modified Ergun equation, which considering about the volume variation of the particles, was proposed to evaluate the structural and hydro-dynamic behaviors of the compressible soft particles bed under a constant pressure-drop or a constant rate operation. Experimental results show different mechanisms for bed-height variation of the constant pressure-drop and constant rate operations. The results of dynamic analysis indicate that without considering the volume variation of the particles, reasonable estimations of the properties of the compressible particle beds are not possible. In the third portion, compressible Sephadex and Ca-alginate particles are adopted for the cake filtration experiments under a constant pressure(CPF) and a constant rate(CRF) operation. The method of dynamic analysis of cake filtration proposed by Lu et al.(2001b) is modified by the consideration of the volume variation of the particles to investigate the local cake properties of compressible soft particles. From the experimental results, the filtration curve shows various stages due to the deformability of compressible particles. Results obtained by dynamic analysis show that although the cake structures obtained by CPF and CRF differ obviously, the relations between the local porosity and the solid compressive pressure of the two operations are approximately the same. The verification of the cake characteristic values obtained by dynamic analysis by the estimation of the CPF filtration curve agrees with the experimental value as the curves remain linear. More factors must be considered for evaluating the compression behavior of the cakes of compressible soft particles. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:39:48Z (GMT). No. of bitstreams: 1 ntu-94-D90524013-1.pdf: 6401378 bytes, checksum: 53f715a181a61867f5dc903434468fcd (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 可壓縮軟粒子之壓縮及過濾行為之研究
A STUDY ON THE COMPRESSION OF COMPRESSIBLE SOFT PARTICLES AND FILTRATION OF ITS SLURRIES 目錄 頁次 誌謝 ------------------------------------------------ I 中文摘要 --------------------------------------------- III 英文摘要 --------------------------------------------- V 目錄 ------------------------------------------------- VII 圖目錄 ----------------------------------------------- X 表目錄 ----------------------------------------------- XXI 第一章 緒論 ----------------------------------------- 1 1-1 可變形軟粒子與固液分離 ------------- 1 1-2 論文架構 --------------------------- 4 第二章 文獻回顧 ------------------------------------ 6 2-1 濾餅結構變化行為的定義 ------------ 7 2-2 粒子壓縮行為之研究 ----------------- 10 2-2-1 粒子受力作用下之行為模式 ----------- 11 2-2-2 不可壓縮軟粒子 --------------------- 12 2-2-3 可壓縮軟粒子 ----------------------- 15 2-3 流體流經堆積床及多孔體之研究 ------- 18 2-3-1 剛性粒子堆積床及剛性多孔介質 ------- 18 2-3-2 可變形軟粒子堆積床及可變形多孔介質 23 2-4 濾餅過濾之研究 --------------------- 27 2-4-1 濾餅過濾理論 ----------------------- 27 2-4-2 可壓縮及軟粒子濾餅之過濾 ----------- 32 2-4-3 濾餅成長及局部性質之動態解析 ------- 38 第三章 軟粒子機械壓縮模式 -------------------------- 42 3-1 粒子壓縮變形模式之相關研究 --------- 42 3-1-1 Hertz定律 -------------------------- 42 3-1-2 Tatara理論 ------------------------- 44 3-1-3 Lu et al.之推導 -------------------- 46 3-1-4 黏彈性模式 ------------------------- 46 3-2 可壓縮軟粒子變形行為之理論模式 ----- 48 3-2-1 側邊曲面為圓弧型態 ----------------- 49 3-2-2 側邊曲面為橢圓弧型態 --------------- 53 3-3 實驗裝置、物料及方法 --------------- 57 3-3-1 粒子壓縮實驗裝置 ------------------- 57 3-3-2 實驗物料 --------------------------- 60 3-3-3 實驗方法 --------------------------- 61 3-4 實驗及分析結果與討論 --------------- 63 3-4-1 單一軟粒子壓縮模式之探討 ----------- 63 3-4-1-1 單一軟粒子壓縮行為之觀察 ----------- 63 3-4-1-2 單一軟粒子之壓縮行為 --------------- 65 3-4-2 二維堆積軟粒子群之壓縮行為 --------- 82 3-4-2-1 相連雙球之壓縮行為 ----------------- 82 3-4-2-2 規則排列之多粒子系統壓縮行為 ------- 86 3-5 結論 ------------------------------- 96 第四章 流體流經可壓縮軟粒子堆積床之研究 ------------ 98 4-1 剛性與軟粒子堆積床特性之比較 ------- 99 4-1-1 點接觸與面接觸模式 ----------------- 99 4-1-2 粒子床高變化與時間關係 ------------- 102 4-2 流體流經粒子堆積床之水力行為-壓力降與 流量關係 --------- 103 4-2-1 孔隙度隨時間變化之關係 ------------- 105 4-2-2 球形度與孔隙度之關係式 ------------- 106 4-3 實驗裝置、物料及方法 --------------- 108 4-3-1 實驗內容 --------------------------- 108 4-3-2 實驗裝置 --------------------------- 108 4-3-3 實驗物料 --------------------------- 110 4-3-4 實驗方法 --------------------------- 112 4-4 實驗結果 --------------------------- 116 4-4-1 實驗過程之實際型態觀察 ------------- 116 4-4-2 實驗數據分析 ----------------------- 122 4-5 流體流經可壓縮軟粒子堆積床行為之動態 分析 -- 129 4-5-1 分析方法 --------------------------- 129 4-5-2 以動態分析方法模擬之結果 ----------- 134 4-6 結論 ------------------------------- 150 第五章 可壓縮軟粒子之過濾行為及其動態分析 ---------- 152 5-1 軟粒子之過濾行為 ------------------- 152 5-2 含可壓縮粒子濾餅性質之動態解析 ----- 153 5-2-1 理論背景 --------------------------- 153 5-2-2 動態模擬所需數據及模擬程序 ----------163 5-3 實驗裝置、物料及方法 --------------- 167 5-3-1 過濾實驗裝置 ----------------------- 167 5-3-2 實驗物料 --------------------------- 170 5-3-3 實驗方法 --------------------------- 172 5-4 實驗及分析結果與討論 --------------- 175 5-4-1 恆壓過濾 --------------------------- 175 5-4-1-1 實驗結果 --------------------------- 175 5-4-1-2 恆壓過濾實驗之動態分析結果 --------- 181 5-4-2 恆率過濾 --------------------------- 189 5-4-2-1 實驗結果 --------------------------- 190 5-4-2-2 恆率過濾實驗之動態分析結果 ----- 193 5-4-3 恆壓與恆率過濾操作下之濾餅性質比較 199 5-4-4 以動態模擬所得濾性值預測過濾行為 --- 203 5-5 結論 ------------------------------- 208 第六章 總結 ---------------------------------------- 210 符號說明 --------------------------------------------- 212 參考文獻 --------------------------------------------- 217 中英對照 --------------------------------------------- 229 附錄 ------------------------------------------------- 232 A. 實驗用物料特性 --------------------- 232 B. 實驗設備細目及校正曲線 ------------- 240 C. 單一軟粒子壓縮模式之詳細推導過程 --- 250 D. 二維平面規則堆積中粒子間孔隙度之估計法 ------ 258 E. 以動態模擬所得濾性值預測過濾行為之方法 ------ 261 | |
dc.language.iso | zh-TW | |
dc.title | 可壓縮軟粒子之壓縮及過濾行為之研究 | zh_TW |
dc.title | A study on the compression of compressible soft particles and filtration of its slurries | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 呂維明(Wei-Ming Lu) | |
dc.contributor.oralexamcommittee | 吳紀聖(Chi-Sheng Wu),莊清榮(Ching-Jong Chuang),黃國楨(Kuo-Jen Hwang),童國倫(Kuo-Lun Tung) | |
dc.subject.keyword | 可壓縮,不可壓縮,軟粒子,壓縮模式,堆積床,濾餅局部性質, | zh_TW |
dc.subject.keyword | compressible,incompressible,compression model,particle bed,local cake properties, | en |
dc.relation.page | 262 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-08-02 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 6.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。