請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35033完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明 | |
| dc.contributor.author | Chin-Yu Ko | en |
| dc.contributor.author | 柯清瑀 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:39:16Z | - |
| dc.date.available | 2005-08-09 | |
| dc.date.copyright | 2005-08-09 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-08-05 | |
| dc.identifier.citation | [1] Abagyan RA, Batalov S. 1997. Do aligned sequences share the same fold? J Mol Biol. 273(1):355-368.
[2] Abagyan R, Batalov S, Cardozo T, Totrov M, Webber J, Zhou Y. 1997. Homology modeling with internal coordinate mechanics: Deformation zone mapping and improvements of models via conformational search. PROTEINS: Structure, Function, and Genetics, Suppl. 1: 29–37. [3] Akustu T, Miyano S. 1997. On the approximation of protein threading. In S. Istrail, R. Karp, T. Lengauer, P. Pevzner, R. Shamir, and M.Waterman (Eds.). Proc. Intl. Conf. on Computional Molecular Biology. pp. 3-8 [4] Blanco FJ, RivasG, Serrano L. 1994. Ashort linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat. Struct. Biol. 1: 584–590. [5] Bystroff C, Baker D. 1998. Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol. 281: 565–577. [6] Bystroff C, Simons KT, Han KF, Baker D. 1996. Local sequence-structure correlations in proteins. Curr. Opin. Biotechnol. 7: 417–421. [7] Bystroff C, Thorsson V, Baker D. 2000. HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins. J. Mol. Biol. 301: 173–190. [8] Callihan DE, Logan TM. 1999. Conformations of peptide fragments from the FK506 binding protein: comparison with the native and urea-unfolded states. J. Mol. Biol. 285: 2161–2175. [9] Capener CE, Shrivastava IH, Ranatunga KM, Forrest LR, Smith GR, Sansom MSP. 2000. Homology Modeling and Molecular Dynamics Simulation Studies of an Inward Rectifier Potassium Channel. Biophysical Journal. 78: 2929-2942. [10] Chou JJ, Li S, Bax A. 2000. Study of conformational rearrangement and refinement of structural homology models by the use of heteronuclear dipolar couplings. J. Biomol. NMR. 18: 217-227. [11] Cohen BI, Presnell SR, Cohen FE. 1993. Origins of structural diversity within sequentially identical hexapeptides. Protein Sci. 2: 2134–2145. [12] Cornilescu G, Delaglio F, Bax A. 1999. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR. 13: 289-302. [13] Cui Y, Chen RS, Wong WH. 1998. Protein folding simulation with genetic algorithm and supersecondary structure constraints. Proteins: Struct. Funct. Genet. 31: 247-257. [14] D. G. Kneller, F. E. Cohen & R. Langridge. 1990. Improvements in Protein Secondary Structure Prediction by an Enhanced Neural Network, Journal of Molecular Biology, 214: 171-182 [15] Dill KA, Bromberg S, Yue K, Fiebig KM, Yee DP, et al. 1995. Principles of protein folding—a perspective from simple exact models. Protein Sci. 4: 561–602. [16] Epstain CJ, Goldberger RF, Anfinsen CB. 1963. Cold Spring Harbor Symp. Quant. Biol. 28: 439. [17] Gatchell DW, Dennis S, Vejda S. 2000. Discrimination of near-native proteins structures from misfolded models by empirical free energy functions. Proteins: Struct. Funct. Genet. 41: 518–534 [18] Godzik A. 1997. Counting and classifying possible protein folds. Trends in biotechnology.15 : 147-151 [19] Han KF, Bystroff C, Baker D. 1997. Three-dimensional structures and contexts associated with recurrent amino acid sequence patterns. Protein Sci. 6: 1587–1590. [20] Han KF, Baker D. 1995. Recurring local sequence motifs in proteins. J. Mol. Biol. 251: 176-187. [21] Hinds DA, Levitt M. 1994. Exploring conformational space with a simple lattice model for protein structure. J. Mol. Biol. 243: 668–682. [22] Ishikawa K, Yue K, Dill KA. 1999. Predicting the structures of 18 peptides using Geocore. Protein Sci. 8: 716–721. [23] Johnson,M.S and Overington, J.P. 1993. A structural basis for sequence comparisons: an evaluation of scoring methodologies. J.Mol. Biol. 223, 716-738. [24] Jones DT. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292: 195–202. [25] Kabsch W, Sander C. 1984. On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations. Proc. Natl. Acad. Sci. USA 81: 1075–1078. [26] King RD , Sternberg MJE. 1996. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci,5:2298-2310 [27] Kolinski A, Skolnick J. 1994. Monte Carlo simulations of protein folding. II. Application to protein A, ROP, and crambin. Proteins: Struct. Funct. Genet. 18: 353–366. [28] Lathrop RH. 1994. The protein threading problem with sequence amino acid interaction preferences is NP-complete. Protein Engineering. 7:1059-1068. [29] Lee MR, Duan Y, Kollman PA. 2000. Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins: Struct. Funct. Genet. 39: 309–316. [30] Marqusee S, Robbins VH, Baldwin RL. 1989. Unusually stable helix formation in short alanine-based peptides. Proc. Natl. Acad. Sci. USA 86: 5286–5290. [31] Mehta, P., Heringa, J. & Argos, P. 1995. A simple and fast approach to prediction of protein secondary structure from multiple aligned sequences with accuracy above 70 %. Protein Science, 4: 2517-2525 [32] Michael JE Sternberg, Paul A Bates, Lawrence A Kelley and Robert M MacCallum.1999. progress in protein structure prediction : assessment of casp3.Curr Opin Struct Biol. Jun;9(3):368-73 [33] Mirny LA, Shakhnovich EI. 1998. Protein structure prediction by threading: Why it works and why it does not. J. Mol. Biol. 283:507-526. [34] Moult J, Hubbard T, Fidelis K, Pedersen JT. 1999. Critical assessment of methods of protein structure prediction (CASP): round III. Proteins: Struct. Funct .Genet. Suppl. 3: 2–6. [35] Munoz V, Serrano L. 1996. Local versus nonlocal interactions in protein folding and stability—an experimentalist’s point of view. Fold. Des. 1: R71–77. [36] Nickolai N. Alexandrov, Daniel Fischer .1996. Analysis of topological and nontopological structural similaritirs in PDB: new examples with old structure. Proteins: Struct. Funct. and Genet. 25:354-365 [37] Ogawa H, Toyoshima C. 2002. Homology modeling of the cation binding sites of Na+K+-ATPase. PNAS. 99: 15977-15982. [38] Orengo CA, Bray JE, Hubbard T, LoConte L, Sillitoe I. 1999. Analysis and assessment of ab initio three-dimensional prediction, secondary structure, and contacts prediction. Proteins: Struct. Funct. Genet. Suppl 3: 149–170. [39] Park BH, Levitt M. 1995. The complexity and accuracy of discrete state models of protein structure. J. Mol. Biol. 249: 493–507. [40] Robert B. Russell, Peter D. Sasieni and Michael J. E. Sternberg. 1998. Supersites within superfolds. Binding site similarity in the absence of homology. J. Mil. Biol. 282: 903-918 [41] Rost, B ,Sander C .1993. Prediction of protein secondary structure at better than 70 % Accuracy, Journal of Molecular Biology, 232: 584-599. [42] R.Durbin, S. Eddy, A. Krogh, G. Mitchison. 1998. Biological sequence analysis. Cambridge. [43] Reva BA, Finkelstein AV, Sanner MF, Olson AJ. 1996. Adjusting potential energy functions for lattice models of chain molecules. Proteins: Struct. Funct. Genet. 25: 379–388. [44] Rost B, Sander C. 1993. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232: 584–599. [45] Salamov AA. , Solovyev VV. 1995. Prediction of protein secondary sturcture by combining nearest-neighbor algorithms and multiply sequence alignments. Journal of Molecular Biology, 247,1 [46] Salzberg S, Seals D, Kasif S. 1998. Computational Method in Molecular Biology, Chapter 12. [47] Simons KT, Kooperberg C, Huang E, Baker D. 1997. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268:209–25 [48] Skolnick J, Kolinski A. 1991. Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics. J. Mol. Biol. 221:499–531. [49] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers ,David J. Lipman 1990. Basic Local Alignment Search Tool. J. Mol. Biol. 215:403-410. [50] Sternberg MJ, Cohen FE, Taylor WR. 1982. A combinational approach to the prediction of the tertiary fold of globular proteins. Biochem. Soc. Trans. 10: 299–301. [51] Thiele R, Zimmer R and Lengauer T. 1999. Protein Threading by Recursive Dynamic Programming. J. Mol. Biol. 290: 757-779. [52] Yang Zhang, Jeffrey Skolnick (2004) Tertiary structure Predictions on a comprehensive benchmark of medium to large size proteins. Biophy. J. 87 2647-2655 [53] Yuzhen Ye , Lukasz Jaroszewski , Weizhong Li and Adam Godzik .2003. A segment alignment approach to protein comparison. Bioinformatics.19(6): 742-749 [54] 宋大辰,1992。蛋白質局部重複性結構之分析—以EM為輔助之群聚演算法。碩士論文,國立台灣大學醫學工程學研究所。 [55] 王秀綾,1993。SCOP分類之蛋白質摺疊結構特徵:以建構區塊為基礎之隱藏馬可夫模型。碩士論文,國立台灣大學醫學工程學研究所。 [56] 林書鴻,1994。基於核苷酸序列樣式之基因剪接位置預測演算法。碩士論文,國立台灣大學醫學工程學研究所。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35033 | - |
| dc.description.abstract | 蛋白質結構的瞭解在過去的生物醫學的相關研究中扮演了非常重要的角色。在傳統上以實驗方法來驗證其結構,例如:X-射線繞射法或NMR光譜法。而此二者皆有其技術上的困難與限制,如果可以正確的從蛋白質序列對應到正確的蛋白質結構,不但可以省卻實驗上所必須花的人力物力,更可以進一步迅速的瞭解蛋白質可能具有的其他功能,以解決在製藥或是臨床實驗方面可能遇到的瓶頸。蛋白質預測的主要困難在於主要模版的選取以及沒有同源蛋白質可以做為參考,造成主要骨架在建立上有所偏差,即使以區域性的最佳化亦無法修正回來。本論文提出了一個新的方法,可以將蛋白質依照小片段的結構進行分類,以進而瞭解該蛋白質可能的結構。
本論文利用序列樣式探勘作為小片段的主要分類方法主要靈感來自於在建構蛋白質小片段資料庫時發現有許多特定的序列模式。若可以將所有資料庫中的分群都找出所有可能的特定序列樣式,也就是找出類似結構的小片段氨基酸之間的作用力的特定模式,就可以將其資料庫的每個分群給予不同的特徵,以判斷出未知結構的序列可能對應的結構。在類似結構的蛋白質之間,氨基酸序列不一定相近,但是使用座標做註解的片段分類必定相近,且理論上可以有效減低因序列少許變動而產生的之結構變化。 有鑑於目前不論蛋白質三級結構預測或是二級結構預測都相當仰賴同源蛋白質的存在,在本論文提出的方法中刻意捨棄尋找同源蛋白質的步驟,但秉持著同源模擬法的概念進行廣義的同源模擬法,在建立的測試資料中可以達到正確率在78%左右,而實際個案中也達到77%以上的正確率。 | zh_TW |
| dc.description.abstract | Protein structure prediction plays a major role in clinical research of biomedical science in the 21st century. In the past, protein structures were obtained by X-ray diffraction or nuclear magnetic resonance but both methods have technical limitation. If a fragmented protein sequence can be correctly matched to its structure, it would be more effective to infer the unknown functions of a protein with less expense and numerous problems in biomedical area may be resolved naturally.
The major difficulty in developing the method of protein structure prediction lies in the selection of the protein backbone template especially when there is no homology protein to refer to, which leads to the deviation of backbone structure even though it is a local optimal structure. In this study, we proposed a new method to classify protein fragment, which not only discovered the possible structures of each protein fragment but also opened up varieties of possibilities to predict the whole protein structure. The primary idea of the proposed method is based on pattern mining of protein fragment sequences. It is motivated by the observation that there exist a finite number of specific sequence patterns in each class of protein fragments and these patterns may imply not only sequence information but possible molecular interaction. Once we found out these patterns, we could assign appropriate class to each fragment of protein and match fragments to the possible structures. If two proteins are similar in structures, it does not imply that their sequences be similar as well but using the classes characterizing different protein fragment structures to annotate that two protein sequences should be similar. Theoretically, it can reduce the structural deviation caused by slight sequence difference. Recognizing the potential drawbacks of depending on the existence of homologous proteins commonly found in conventional secondary and tertiary protein structure predictions, in the proposed method, we deliberately dropped the step of finding homologous proteins but still kept the concepts of homology modeling. The prediction accuracy in test data is about 78% and in whole sequence cases is more than 77%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:39:16Z (GMT). No. of bitstreams: 1 ntu-94-R92548047-1.pdf: 994301 bytes, checksum: 650282313a84264bc02dfc87c0caaad5 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 第一章 背景與目的 1
第二章 文獻探討 7 2.1 序列比對 7 2.2 二級結構預測模型 10 2.3 三級結構預測模型 13 2.3.1 Homology modeling(同源模擬法) 13 2.3.2 Threading(穿針引線法) 16 2.3.3 Ab initio Method(從頭開始的方法) 18 2.4 蛋白質片段分群分群 20 2.5 文獻演算法綜合討論 23 第三章 研究方法 25 3.1 研究架構 25 3.2 實驗材料簡介 28 3.3 氨基酸群組選取 29 3.4 序列樣式探勘 31 3.4.1 氨基酸子分類 34 3.4.2 建立保留序列與機率 35 3.5 機率建構 38 3.6 訂定判斷臨界值 41 第四章 研究結果與討論 42 4.1 研究材料簡介: 42 4.2 研究結果: 43 4.3 個案探討 53 第五章 結論與未來研究方向 57 第六章 文獻 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 未知結構蛋白質片段分類 | zh_TW |
| dc.subject | 生物資訊 | zh_TW |
| dc.subject | 氨基酸序列樣式探勘 | zh_TW |
| dc.subject | Bioinformatics | en |
| dc.subject | Unknown structure protein fragment classification | en |
| dc.subject | Protein fragment sequence pattern mining | en |
| dc.title | 基於氨基酸序列樣式之未知結構蛋白質片段分類 | zh_TW |
| dc.title | Classifying protein fragment of unknown structure base on amino acid sequence pattern | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃鎮剛,陳倩瑜 | |
| dc.subject.keyword | 生物資訊,氨基酸序列樣式探勘,未知結構蛋白質片段分類, | zh_TW |
| dc.subject.keyword | Bioinformatics,Protein fragment sequence pattern mining,Unknown structure protein fragment classification, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-08-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 971 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
