請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35031完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明 | |
| dc.contributor.author | Po-Jen Ke | en |
| dc.contributor.author | 柯博仁 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:39:13Z | - |
| dc.date.available | 2005-08-09 | |
| dc.date.copyright | 2005-08-09 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-08-06 | |
| dc.identifier.citation | [1] Anderson BDO and Moore JB. (1979) Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ.
[2] Baldi P and Long AD. (2001) A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics, 17, 509–519. [3] Beal ML. (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21,349-356. [4] Benjamini Y and Hochberg Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B., 57, 289–300. [5] Bescond M and Rahmani Z. (2004) Dual-specificity tyrosine-phosphorylated and regulated kinase 1A (DYRK1A) interacts with the phytanoyl-CoA α-hydroxylase associated protein 1 (PAHX-AP1), a brain specific protein. IJBCB, 37,775-783. [6] Bolstad BM, Irizarry RA, Astrand M and Speed TP. (2003) A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics, 19,185-193. [7] Cleveland WS. (1979) Robust locally weighted regression and smoothing scatter plots. J. Amer. Statist. Assoc., 74, 829-836. [8] Chrast R and Chen H. (1995) Mapping of the human transcription factor GABPA (E4TF1-60) gene to chromosome 21. GENOMICS, 28,119-122. [9] Efron B, Tibshirani R, Storey JD and Tusher V. (2001) Empirical Bayes Analysis of a Microarray Experiment, JASA, 96, 1151-1160. [10] Friedman N. (2004) Inferring Cellular Networks Using Probabilistic Graphical Models. Science, vol 303. [11] Huber W, Heydebreck AV, Sueltmann H, Poustka A and Vingron M. (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 18, S96-S104. [12] Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, and Speed TP. (2003) Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics, 4, 249-264. [13] Jain N, Thatte J, Braciale T and Ley K. (2003) Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics, 19,1945-1951. [14] Li C and Wong WH. (2001) Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proc. Natl. Acad. Sci., 98, 31-36. [15] Li C and Wong WH. (2001) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biology, 2, research0032.1-0032.11. [16] Lipshutz RJ, Fodor SP, Gingeras TR and Lockhart DJ. (1999) High density synthetic oligonucleotide arrays. Nat. Genet., 21, 20-24. [17] Nelson DL and Gibbs RA. (2004). The Critical Region in Trisomy 21. SCIENCE, vol 306. [18] Pan W. (2002) A Comparative Review of Statistical Methods for Discovering Differentially Expressed Genes in Replicated Microarray Experiments. Bioinformatics, 12, 546-554. [19] Pan W. (2003) On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression. Bioinformatics, 19,1333-1340. [20] Perrin BE and Ralaivoia L. (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19,ii138-ii148. [21] Rajagopalan D. (2003) A comparison of statistical methods for analysis of high density oligonucleotide array data. Bioinformatics, 19, 1469-1476. [22] Reiner A, Yekutieli D and Benjamini Y. (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics, 19,368-375. [23] Rosti AVI and Gales MJF. (2001) Generalised linear Gaussian models. Cambridge University. Engineering Department. CUED/F-INFENG/TR.420. [24] Sapir M and Churchill GA. (2000) Estimating the posterior probability of differential gene expression from microarray data. The Jackson Laboratory. [25] Schadt EE. Li C. Su C. and Wong WH. (2000) Analyzing high-density oligonucleotide gene expression array data. J. Cellular Biochemistry, 80, 192-202. [26] Schadt EE, Li C, Ellis B, and Wong WH. (2001) Feature Extraction and Normalization Algorithms for High-Density Oligonucleotide Gene Expression Array Data. Journal of Cellular Biochemistry Supplement, 37,120-125. [27] Shumway RH and Stoffer DS. (1982) An approach to time series smoothing and forecasting using the EM algorithm. J. Time Series Analysis, 3,253-264. [28] Shumway RH and Stoffer DS. (1991). Dynamic linear models with switching. J Amer. Stat. Assoc., 86,763-769. [29] Silveira HCS and Sommer CA.(2004) A calcineurin inhibitory protein overexpressed in Down's syndrome interacts with the product of a ubiquitously expressed transcript. Braz. J Med Biol. Res., 37,785-789. [30] Tibshirani R. (1988) Estimating transformations for regression via additivity and variance stabilization. J. Am. Stat. Assoc., 83, 394-405. [31] Troyanskaya OG, Garber ME, Brown PO, Botstein D and Altman RB. (2002) Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics, 18,1454-1461. [32] Tusher VG., Tibshirani R and Chu G.. (2001) Significance analysis of microarrays applied to the ionizing radiation response, PNAS, 98, 5116-5121. [33] Wang S and Ethier S. (2004) A generalized likelihood ratio test to identify differentially expressed genes from microarray data. Bioinformatics, 20,100-104. [34] Wright GW and Simon RM. (2003). A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics, 19,2448-2455. [35] Zhao Y and Pan W. (2003). Modified nonparametric approaches to detecting differentially expressed genes in replicated microarray experiments. Bioinformatics, 19,1046-1054. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35031 | - |
| dc.description.abstract | 生物晶片技術的出現,對研究生命科學的學者提供了一個相當有力的工具,它可以同時分析上萬個基因的表現量與其相互影響的關係。在生物晶片的資料分析方法中,有一個很重要的課題,那就是如何從不同條件的基因表現中尋找有顯著差異的基因。
目前所發表的統計方法中,尚未有方法可以完全準確的找出有顯著表現的基因。在這些方法中大部分的方法都是基於two sample t-test,而這類型的方法利用實驗得來的觀測值去做檢定,但受限於生物晶片的重複實驗量太少,以及無法瞭解確實的資料分佈的關係,使得此類方法的估計結果是令人存疑的。 在本論文裡提出了一種找顯著表現基因的方法,它是屬於一種基於狀態空間模型(state space model)中的線性動態系統(linear dynamic system),可以在少量的樣本數下,由觀測值以及系統的雜訊中利用最佳化的疊代演算法,找出隱藏的實際值,能修正t-test中的mean與variance值,使其更接近真正的基因表現狀態,可以提升t-test檢定的效果。 我們分別利用模擬資料與唐式症的資料來測試本論文提出的方法,並與其他已發表的方法做比較,如two sample t-test,significance analysis of microarrays (SAM),Bayesian probabilistic framework (Bayes),local-pooled-error test (LPE) 等方法。比較方法之間效果的差異。 在模擬資料上的效果顯示,本論文提出的方法,在基因表現量較低的部分,其效果明顯比其他的方法要好。而在實際的唐式症資料上,本論文的方法可以找出與唐式症有顯著關係的基因,這是其他方法所找不到的。兩種資料測試的結果,顯示了本論文方法的效果較其他方法為佳。 | zh_TW |
| dc.description.abstract | The emergence of microarray technology provides a powerful tool for the researchers in life science. It may be used to analyze expression profiles and gene-gene interactions of ten thousands of genes at the same time. In microarray data analysis, one of the important topics is to find differentially expressed genes in different condition.
Important as it is, none of the existing statistical methods is capable of identifying all the differently expressed genes completely correctly. Many of these methods are based on the two sample t-tests, which use observed values from microarray experiments to perform the statistical tests. With a limited number of repeated microarray experiments, the actual distributions of the gene expressions are hard to estimate. As a result, the results derived by these t-test based methods are questionable. A new method based on the state space model is proposed in this thesis for identification of differentially expressed genes from microarray data. The salient feature of the proposed method lies in its capability of identifying differentially expressed genes with only a few replications. The basic idea is to estimate the unobservable model parameters of the actual expressions based on a state space model using the observed microarray data, which is solved by Kalman filtering and EM algorithm. With the estimated model parameters, i.e., means and variances of the actual gene expressions, the accuracy of the t-tests is shown to be greatly enhanced. The performance of the proposed method has been compared to several previous approaches using the simulation data and the down syndrome data. These methods include two sample t-test, significance analysis of microarrays (SAM), Bayesian probabilistic framework (Bayes), and local-pooled-error test (LPE). The analysis results show that for the simulation data, the proposed method is particularly superior to the other tested methods when the gene expression is low. For the down syndrome data, the proposed method has succeeded in identifying several differentially expressed genes that were known to be related to down syndrome but can not be identified by the other methods. Both results support that the proposed method outperform the other tested methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:39:13Z (GMT). No. of bitstreams: 1 ntu-94-R92548036-1.pdf: 437536 bytes, checksum: 865cb72ee9e5fdd1c982e6795c5f7316 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 第一章 序論………………………………………………………………………1
1.1 背景與研究動機……………………………………………………….1 1.2 研究目的……………………………………………………………….5 1.3 論文架構……………………………………………………………….6 第二章 文獻探討…………………………………………………………………7 2.1 Normalization方面的文獻探討…………………………………….7 2.2 找顯著表現基因方面的文獻探討………………………………….....9 2.3 各種方法的限制與問題……………………………………………...12 第三章 研究材料與方法……………………………………………………..13 3.1 基本結構與假設……………………………………………………...13 3.2 演算法流程圖………………………………………………………...16 3.3 EM演算法在線性動態系統上的應用……………………………..17 3.4 計算基因表現量參數與統計檢定…………...………………………20 第四章 研究成果與討論…………………………………...…………………..22 4.1 產生simulation data…………………………………………………22 4.2 Simulation data的結果與討論…………………………………….27 4.2.1 A=1.2 的實驗結果…………………………………………..28 4.2.2 A=1.5 的實驗結果……………………………………….….30 4.2.3 A=2.0 的實驗結果……………………………………….….33 4.2.4 A=3.0 的實驗結果……………………………………..……37 4.2.5 4種狀態之實驗結果討論…………………………...………40 4.3 Real data 的介紹…………………………………………………...42 4.4 Real data 的結果與討論………………………………………...…43 第五章 結論與未來研究方向……………………………………..…………..45 5.1 結論…………………………………………………………………...45 5.2 未來研究方向………………………………………………………...47 第六章 參考文獻……………………………………….………………………..48 附錄 各種方法所找出的顯著表現基因與方法之間相同及相異的基因 | |
| dc.language.iso | zh-TW | |
| dc.subject | t-test | zh_TW |
| dc.subject | 唐式症 | zh_TW |
| dc.subject | LPE | zh_TW |
| dc.subject | SAM | zh_TW |
| dc.subject | 狀態空間模型 | zh_TW |
| dc.subject | 顯著表現基因 | zh_TW |
| dc.subject | LPE | en |
| dc.subject | SAM | en |
| dc.subject | Down syndrome | en |
| dc.subject | t-test | en |
| dc.subject | Differential expressed gene | en |
| dc.subject | State Space Model | en |
| dc.title | 基於狀態空間模型尋找顯著表現基因之研究 | zh_TW |
| dc.title | Identification of differential expressed genes based on state space model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳正剛,林怡杏 | |
| dc.subject.keyword | 顯著表現基因,狀態空間模型,t-test,SAM,LPE,唐式症, | zh_TW |
| dc.subject.keyword | Differential expressed gene,State Space Model,t-test,SAM,LPE,Down syndrome, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-08-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 427.28 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
