Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35020
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華
dc.contributor.authorYi-Ru Chenen
dc.contributor.author陳奕如zh_TW
dc.date.accessioned2021-06-13T06:38:58Z-
dc.date.available2005-08-18
dc.date.copyright2005-08-18
dc.date.issued2005
dc.date.submitted2005-08-09
dc.identifier.citationAkiyoshi,Y., Clayton,J., Phan,L., Yamamoto,M., Hinnebusch,A.G., Watanabe,Y., and Asano,K. (2001). Fission yeast homolog of murine Int-6 protein, encoded by mouse mammary tumor virus integration site, is associated with the conserved core subunits of eukaryotic translation initiation factor 3. J Biol Chem. 276, 10056-10062.
Asano,K., Clayton,J., Shalev,A., and Hinnebusch,A.G. (2000). A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev. 14, 2534-2546.
Asano,K., Merrick,W.C., and Hershey,J.W.B. (1997). The translation initiation factor eIF3-p48 subunit is encoded by int-6, a site of frequent integration by the mouse mammary tumour virus genome. J Biol Chem. 272, 23477-23480.
Bandyopadhyay,A., Lakshmanan,V., Matsumoto,T., Chang,E.C., and Maitra,U. (2002). Moe1 and spInt6, the fission yeast homologues of mammalian translation initiation factor 3 subunits p66 (eIF3d) and p48 (eIF3e), respectively, are required for stable association of eIF3 subunits. J. Biol. Chem. 277, 2360-2367.
Barnhart,B.C., Alappat,E.C., and Peter,M.E. (2003). The CD95 type I/type II model. Semin Immunol. 15, 185-193.
Bernard,B., Fest,T., Pretet,J.L., and Mougin,C. (2001). Staurosporine-induced apoptosis of HPV positive and negative human cervical cancer cells from different points in the cell cycle. Cell Death. Differ. 8, 234-244.
Bloss,T.A., Witze,E.S., and Rothman,J.H. (2003). Suppression of CED-3-independent apoptosis by mitochondrial betaNAC in Caenorhabditis elegans. Nature 424, 1066-1071.
Caulin,C., Salvesen,G.S., and Oshima,R.G. (1997). Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol. 138, 1379-1394.
Caulin,C., Ware,C.F., Magin,T.M., and Oshima,R.G. (2000). Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J Cell Biol. 149, 17-22.
Chang,E.C. and Schwechheimer,C. (2004). ZOMES III: the interface between signalling and proteolysis. Meeting on The COP9 Signalosome, Proteasome and eIF3. EMBO Rep. 5, 1041-1045.
Chou,C.F., Riopel,C.L., Rott,L.S., and Omary,M.B. (1993). A significant soluble keratin fraction in 'simple' epithelial cells. Lack of an apparent phosphorylation and glycosylation role in keratin solubility. J. Cell Sci. 105 ( Pt 2), 433-444.
Coulombe,P.A. and Omary,M.B. (2002). 'Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 14, 110-122.
Danial,N.N. and Korsmeyer,S.J. (2004). Cell death: critical control points. Cell 116, 205-219.
Denk,H. and Lackinger E. (1986). Cytoskeleton in liver diseases. Semin Liver Dis. 6, 199-211.
Dinsdale,D., Lee,J.C., Dewson,G., Cohen,G.M., and Peter,M.E. (2004). Intermediate filaments control the intracellular distribution of caspases during apoptosis. Am J Pathol. 164, 395-407.
Du,C., Fang,M., Li,Y., Li,L., and Wang,X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42.
Gilbert,S., Loranger,A., Daigle,N., and Marceau,N. (2001). Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J. Cell Biol. 154, 763-773.
Hengartner,M.O. and Horvitz,H.R. (1994). Programmed cell death in Caenorhabditis elegans. Curr Opin Genet Dev. 4, 581-586.
Hershey,J.W., Asano,K., Naranda,T., Vornlocher,H.P., Hanachi,P., and Merrick,W.C. (1996). Conservation and diversity in the structure of translation initiation factor EIF3 from humans and yeast. Biochimie 78, 903-907.
Inada,H., Izawa,I., Nishizawa,M., Fujita,E., Kiyono,T., Takahashi,T., Momoi,T., and Inagaki,M. (2001). Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. J Cell Biol. 155, 415-426.
Janicke,R.U., Sprengart,M.L., Wati,M.R., and Porter,A.G. (1998). Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357-9360.
Kottke,T.J., Blajeski,A.L., Meng,X.W., Svingen,P.A., Ruchaud,S., Mesner,P.W., Jr., Boerner,S.A., Samejima,K., Henriquez,N.V., Chilcote,T.J., Lord,J., Salmon,M., Earnshaw,W.C., and Kaufmann,S.H. (2002). Lack of correlation between caspase activation and caspase activity assays in paclitaxel-treated MCF-7 breast cancer cells. J. Biol. Chem. 277, 804-815.
Ku,N.O., Liao,J., and Omary,M.B. (1998). Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. EMBO J. 17, 1892-1906.
Ku,N.O., Liao,J., and Omary,M.B. (1997). Apoptosis generates stable fragments of human type I keratins. J Biol Chem. 272, 33197-33203.
Ku,N.O., Michie,S., Oshima,R.G., and Omary,M.B. (1995). Chronic hepatitis, hepatocyte fragility, and increased soluble phosphoglycokeratins in transgenic mice expressing a keratin 18 conserved arginine mutant. J. Cell Biol. 131, 1303-1314.
Ku,N.O. and Omary,M.B. (2001). Effect of mutation and phosphorylation of type I keratins on their caspase-mediated degradation. J Biol Chem. 276, 26792-26798.
Ku,N.O. and Omary,M.B. (2000). Keratins turn over by ubiquitination in a phosphorylation-modulated fashion. J. Cell Biol. 149, 547-552.
Lee,J.C., Schickling,O., Stegh,A.H., Oshima,R.G., Dinsdale,D., Cohen,G.M., and Peter,M.E. (2002). DEDD regulates degradation of intermediate filaments during apoptosis. J. Cell Biol. 158, 1051-1066.
Leers,M.P.G., Kolgen,W., Bjorklund,V., Bergman,T., Tribbick,G., Persson,B., Bjorklund,P., Ramaekers,F.C.S., Bjorklund,B., Nap,M., Jornvall,N., and Schutte,B. (1999). Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J. Pathol. 187, 572.
Li,H., Zhu,H., Xu,C.J., and Yuan,J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501.
Li,P., Nijhawan,D., Budihardjo,I., Srinivasula,S.M., Ahmad,M., ,A.E.S., and Wang,X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.
Lowthert,L.A., Ku,N.O., Liao,J., Coulombe,P.A., and Omary,M.B. (1995). Empigen BB: a useful detergent for solubilization and biochemical analysis of keratins. Biochem. Biophys. Res. Commun. 206, 370-379.
Luo,X., Budihardjo,I., Zou,H., Slaughter,C., and Wang,X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490.
MacFarlane,M., Merrison,W., Dinsdale,D., and Cohen,G.M. (2000). Active caspases and cleaved cytokeratins are sequestered into cytoplasmic inclusions in TRAIL-induced apoptosis. J. Cell Biol. 148, 1239-1254.
Mayeur,G.L., Fraser,C.S., Peiretti,F., Block,K.L., and Hershey,J.W. (2003). Characterization of eIF3k: a newly discovered subunit of mammalian translation initiation factor elF3. Eur J Biochem. 270, 4133-4139.
Miramar,M.D., Costantini,P., Ravagnan,L., Saraiva,L.M., Haouzi,D., Brothers,G., Penninger,J.M., Peleato,M.L., Kroemer,G., and Susin,S.A. (2001). NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem. 276, 16391-16398.
Moll,R., Franke,W.W., Schiller,D.L., Geiger,B., and Krepler,R. (1982). The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982 Nov;31(1):11-24. 31, 11-24.
Muppidi,J.R., Tschopp,J., and Siegel,R.M. (2004). Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity. 21, 461-465.
Nicholson,D.W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death. Differ. 6, 1028-1042.
Nicholson,D.W. and Thornberry,N.A. (1997). Caspases: killer proteases. Trends Biochem. Sci. 22, 299-306.
Omary,M.B., Coulombe,P.A., and McLean,W.H. (2004). Intermediate filament proteins and their associated diseases. N. Engl. J. Med. 351, 2087-2100.
Omary,M.B., Ku,N.O., Liao,J., and Price,D. (1998). Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell. Biochem. 31, 105-140.
Omary,M.B., Ku,N.O., and Toivola,D.M. (2002). Keratins: guardians of the liver. Hepatology 35, 251-257.
Oshima,R.G. (2002). Apoptosis and keratin intermediate filaments. Cell Death. Differ. 9, 486-492.
Pain,V.M. (1996). Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem. 236, 747-771.
Phan,L., Zhang,X., Asano,K., Anderson,J., Vornlocher,H.P., Greenberg,J.R., Qin,J., and Hinnebusch,A.G. (1998). Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Mol. Cell Biol. 18, 4935-4946.
Pincheira,R., Chen,Q., Huang,Z., and Zhang,J.T. (2001). Two subcellular localizations of eIF3 p170 and its interaction with membrane-bound microfilaments: implications for alternative functions of p170. Eur. J. Cell Biol. 80, 410-418.
Porter,R.M. and Lane,E.B. (2003). Phenotypes, genotypes and their contribution to understanding keratin function. Trends Genet. 19, 278-285.
Riedl,S.J. and Shi,Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5, 897-907.
Rotonda,J., Nicholson,D.W., Fazil,K.M., Gallant,M., Gareau,Y., Labelle,M., Peterson,E.P., Rasper,D.M., Ruel,R., Vaillancourt,J.P., Thornberry,N.A., and Becker,J.W. (1996). The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat. Struct. Biol. 3, 619-625.
Salvesen,G.S. and Renatus,M. (2002). Apoptosome: the seven-spoked death machine. Dev Cell. 2, 256-257.
Schickling,O., Stegh,A.H., Byrd,J., and Peter,M.E. (2001). Nuclear localization of DEDD leads to caspase-6 activation through its death effector domain and inhibition of RNA polymerase I dependent transcription. Cell Death. Differ. 8, 1157-1168.
Slee,E.A., Adrain,C., and Martin,S.J. (1999). Serial killers: ordering caspase activation events in apoptosis. Cell Death. Differ. 6, 1067-1074.
Stegh,A.H., Schickling,O., Ehret,A., Scaffidi,C., Peterhansel,C., Hofmann,T.G., Grummt,I., Krammer,P.H., and Peter,M.E. (1998). DEDD, a novel death effector domain-containing protein, targeted to the nucleolus. EMBO J. 17, 5974-5986.
Steller,H. (1995). Mechanisms and genes of cellular suicide. Science 267, 1445-1449.
Stumptner,C., Fuchsbichler,A., Heid,H., Zatloukal,K., and Denk,H. (2002). Mallory body--a disease-associated type of sequestosome. Hepatology 35, 1053-1062.
Sui,G., Soohoo,C., Affar,e.B., Gay,F., Shi,Y., Forrester,W.C., and Shi,Y. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. U. S. A 99, 5515-5520.
Susin,S.A., Lorenzo,H.K., Zamzami,N., Marzo,I., Snow,B.E., Brothers,G.M., Mangion,J., Jacotot,E., Costantini,P., Loeffler,M., Larochette,N., Goodlett,D.R., Aebersold,R., Siderovski,D.P., Penninger,J.M., and Kroemer,G. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999 Feb 4;397(6718):441-6. 397, 441-446.
Thompson,C.B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-1462.
Thornberry,N.A. and Lazebnik,Y. (1998). Caspases: enemies within. Science 281, 1312-1316.
Truong,K. and Ikura,M. (2001). The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr. Opin. Struct. Biol. 11, 573-578.
Verhagen,A.M., Ekert,P.G., Pakusch,M., Silke,J., Connolly,L.M., Reid,G.E., Moritz,R.L., Simpson,R.J., and Vaux,D.L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000 Jul 7;102(1):43-53. 102, 43-53.
Vojtek,A.B. and Hollenberg,S.M. (1995). Ras-Raf interaction: two-hybrid analysis. Methods Enzymol. 255, 331-342.
Wang,X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922-2933.
Wei,Z., Zhang,P., Zhou,Z., Cheng,Z., Wan,M., and Gong,W. (2004). Crystal structure of human eIF3k, the first structure of eIF3 subunits. J. Biol. Chem. 279, 34983-34990.
Yahalom,A., Kim,T.H., Winter,E., Karniol,B., von Arnim,A.G., and Chamovitz,D.A. (2001). Arabidopsis eIF3e (INT6) associates with both eIF3e and the COP9 signalosome subunit CSN7. J Biol Chem. 276, 334-340.
Yen,H.C., Gordon,C., and Chang,E.C. (2003). Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome. Cell 112, 207-217.
Yuan,J. and Horvitz,H.R. (1992). The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development. 116, 309-320.
Zatloukal,K., Stumptner,C., Fuchsbichler,A., Janig,E., and Denk,H. (2004). Intermediate filament protein inclusions. Methods Cell Biol. 78, 205-228.
Zheng,T.S., Hunot,S., Kuida,K., and Flavell,R.A. (1999). Caspase knockouts: matters of life and death. Cell Death. Differ. 6, 1043-1053.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35020-
dc.description.abstract真核生物轉譯因子3k(eIF3k),分子量約28kDa,為真核生物之轉譯相關分子群中最小的亞分子。eIF3k在不同的物種間具有高度的演化保守性,在人類、小鼠、線蟲以及阿拉伯芥中均可找到同源相似物。在本篇論文中,我們並未觀察到eIF3k在一般轉譯過程中扮演著必要的角色,但卻發現了eIF3k具有另一特殊功能在細胞凋亡的調控上。首先,利用小片段干擾核甘酸 (siRNA) 抑制eIF3k的表現,發現可以降低細胞對死亡刺激的反應,這些刺激包括UV損傷以及STS (staurosporine)。更進一步,我們接櫫eIF3k影響細胞凋亡的分子機制。利用螢光蛋白標定及Trtiton 生化萃取分析,我們觀察到大部分的eIF3k會座落於角質蛋白8號 (K8) 和18號 (K18) 所共同組成的中間細絲網路 (intermediate filaments)。我們也證實這樣的現象是由於eIF3k和K8/K18會相互結合,不僅在利用免疫沉澱技術 (immunoprecipiation) 或酵母菌雙雜交系統 (yeast two hybrid) 的實驗上亦然。文獻指出,在細胞凋亡的過程中,K8/K18所形成的中間細絲網路會先崩塌形成包含體 (intracellular inclusion),之後,在細胞凋亡晚期則存在於細胞的cytoplasmic blebs。並且K8/K18會藉由和一些引發細胞凋亡的前驅分子有交互作用,進而調控細胞的死亡,我們因而推測eIF3k是否也藉由K8/K18而影響了細胞的計劃性死亡。因此在機制的剖析中,我們證明了eIF3k的存在與否會影響活化caspases在細胞凋亡過程中在細胞內的分布情形。所以我們初步推論, eIF3k對細胞凋亡的影響,主要藉由和活化的caspases共同競爭與K8/K18間的結合,進而改變活化的caspases在細胞中的分佈,而影響了caspases 和受質間作用的機會。zh_TW
dc.description.abstracteIF3k, a 28 kDa protein, is the smallest subunit of eukaryotic translation initiation factor 3 complex and is evolutionally conserved among higher eukaryotes, including mammals, insects, worms and plants. However, genetic and biochemical studies failed to demonstrate an essential role of eIF3k in general translation. Here, we identified a novel function of eIF3k in promoting apoptosis, as knockdown of endogenous eIF3k could de-sensitize cells to several apoptotic stimuli, such as UV irradiationen
dc.description.provenanceMade available in DSpace on 2021-06-13T06:38:58Z (GMT). No. of bitstreams: 1
ntu-94-R92448001-1.pdf: 1856968 bytes, checksum: bd5e09fd86a34f628977c318f8638a28 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of content 1
Abstract 3
中文摘要 4
Introduction 5
Apoptosis 5
Keratin intermediate filaments 9
Keratin intermediate filaments and apoptosis 11
eIF3k 15
Material & Methods 19
Cell lines and reagents 19
Induction of apoptosis 19
Western blotting and Antibodies 20
Immunofluorescence microscopy 20
FACS analysis 21
Yeast two-hybrid assay 21
Immunoprecipitation 22
Metabolic labeling 22
BrdU ELISA assay 23
Detergent extraction assay 23
FRET (Fluorescence resonance energy transfer) 24
Results 25
siRNA generation to knockdown eIF3k expression. 25
The effect of eIF3k in protein synthesis 26
The effect of eIF3k in cell growth 26
eIF3k’s function in apoptosis regulation 27
eIF3k colocalizes with the cytokeratin 8/18 28
eIF3k directly interacts with K18 in yeast 28
eIF3k associates with K8/K18 in vivo 29
The association of eIF3k with cytokeratin 8/18 filament proved by FRET image analysis 29
Endogenous eIF3k and K8/18 interact with each other. 30
The formation of eIF3k granular structure during apoptosis is caspase 3-dependent 31
eIF3k affects caspase distribution in Triton-soluble cytosolic fraction and Triton-insoluble cytoskeleton fraction. 32
Discussion 34
Reference List 39
Figures 46
Figure 1. Sequence alignment of eIF3k 46
Figure 3. A proposed model for the function of Ced-X. 48
Figure 4. eIF3k siRNA knockdowns the endogenous level of eIF3k. 49
Figure 5. Knockdown of eIF3k would not affect global protein synthesis. 50
Figure 6. Over-expression of eIF3k would not affect global protein synthesis. 51
Figure 7. Knockdown of eIF3k would not affect cell growth. 52
Figure 8. eIF3k knockdown attenuates UV-induced apoptosis.. 53
Figure 9. eIF3k knockdown attenuates Staurosporine(STS)-induced apoptosis.. 54
Figure 10. eIF3k subcellular localization 55
Figure 11. Interaction of eIF3k and K18 in yeast two-hybrid system. 56
Figure 12. eIF3k interacts with K18 in vivo. 57
Figure 13. eIF3k forms a complex with K8 in vivo. 58
Figure 14. Use of FRET methodology to assess in vivo protein interaction 59
Figure 15. Interaction of endogenous eIF3k with endogenous K8/K18 60
Figure 16. The eIF3k granular structures are caspase 3 dependent. 61
Figure 17. eIF3k affects caspase distribution in Triton-soluble cytosolic fraction and Triton-insoluble cytoskeleton fraction. 62
Figure 18. A proposed model for the function of eIF3k. 63
Appendix 64
Appendix I. The effect of eIF3k SiRNA in apoptosis is not observed in cells without cytokeratin 64
dc.language.isoen
dc.subject細胞凋亡zh_TW
dc.subject角質蛋白8號 (K8) 和18號 (K18)zh_TW
dc.subject真核生物轉譯因子3kzh_TW
dc.subjectApoptosisen
dc.subjecteIF3ken
dc.subjectcytokeratin K8/K18en
dc.titleeIF3k 調控細胞凋亡之分子機制與功能探討zh_TW
dc.titleStudy of The Function and Molecular Mechanism of eIF3k in Apoptosis Regulationen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂勝春,許秉寧
dc.subject.keyword真核生物轉譯因子3k,細胞凋亡,角質蛋白8號 (K8) 和18號 (K18),zh_TW
dc.subject.keywordeIF3k,cytokeratin K8/K18,Apoptosis,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2005-08-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved