請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35020完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳瑞華 | |
| dc.contributor.author | Yi-Ru Chen | en |
| dc.contributor.author | 陳奕如 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:38:58Z | - |
| dc.date.available | 2005-08-18 | |
| dc.date.copyright | 2005-08-18 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-08-09 | |
| dc.identifier.citation | Akiyoshi,Y., Clayton,J., Phan,L., Yamamoto,M., Hinnebusch,A.G., Watanabe,Y., and Asano,K. (2001). Fission yeast homolog of murine Int-6 protein, encoded by mouse mammary tumor virus integration site, is associated with the conserved core subunits of eukaryotic translation initiation factor 3. J Biol Chem. 276, 10056-10062.
Asano,K., Clayton,J., Shalev,A., and Hinnebusch,A.G. (2000). A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev. 14, 2534-2546. Asano,K., Merrick,W.C., and Hershey,J.W.B. (1997). The translation initiation factor eIF3-p48 subunit is encoded by int-6, a site of frequent integration by the mouse mammary tumour virus genome. J Biol Chem. 272, 23477-23480. Bandyopadhyay,A., Lakshmanan,V., Matsumoto,T., Chang,E.C., and Maitra,U. (2002). Moe1 and spInt6, the fission yeast homologues of mammalian translation initiation factor 3 subunits p66 (eIF3d) and p48 (eIF3e), respectively, are required for stable association of eIF3 subunits. J. Biol. Chem. 277, 2360-2367. Barnhart,B.C., Alappat,E.C., and Peter,M.E. (2003). The CD95 type I/type II model. Semin Immunol. 15, 185-193. Bernard,B., Fest,T., Pretet,J.L., and Mougin,C. (2001). Staurosporine-induced apoptosis of HPV positive and negative human cervical cancer cells from different points in the cell cycle. Cell Death. Differ. 8, 234-244. Bloss,T.A., Witze,E.S., and Rothman,J.H. (2003). Suppression of CED-3-independent apoptosis by mitochondrial betaNAC in Caenorhabditis elegans. Nature 424, 1066-1071. Caulin,C., Salvesen,G.S., and Oshima,R.G. (1997). Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol. 138, 1379-1394. Caulin,C., Ware,C.F., Magin,T.M., and Oshima,R.G. (2000). Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J Cell Biol. 149, 17-22. Chang,E.C. and Schwechheimer,C. (2004). ZOMES III: the interface between signalling and proteolysis. Meeting on The COP9 Signalosome, Proteasome and eIF3. EMBO Rep. 5, 1041-1045. Chou,C.F., Riopel,C.L., Rott,L.S., and Omary,M.B. (1993). A significant soluble keratin fraction in 'simple' epithelial cells. Lack of an apparent phosphorylation and glycosylation role in keratin solubility. J. Cell Sci. 105 ( Pt 2), 433-444. Coulombe,P.A. and Omary,M.B. (2002). 'Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 14, 110-122. Danial,N.N. and Korsmeyer,S.J. (2004). Cell death: critical control points. Cell 116, 205-219. Denk,H. and Lackinger E. (1986). Cytoskeleton in liver diseases. Semin Liver Dis. 6, 199-211. Dinsdale,D., Lee,J.C., Dewson,G., Cohen,G.M., and Peter,M.E. (2004). Intermediate filaments control the intracellular distribution of caspases during apoptosis. Am J Pathol. 164, 395-407. Du,C., Fang,M., Li,Y., Li,L., and Wang,X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42. Gilbert,S., Loranger,A., Daigle,N., and Marceau,N. (2001). Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J. Cell Biol. 154, 763-773. Hengartner,M.O. and Horvitz,H.R. (1994). Programmed cell death in Caenorhabditis elegans. Curr Opin Genet Dev. 4, 581-586. Hershey,J.W., Asano,K., Naranda,T., Vornlocher,H.P., Hanachi,P., and Merrick,W.C. (1996). Conservation and diversity in the structure of translation initiation factor EIF3 from humans and yeast. Biochimie 78, 903-907. Inada,H., Izawa,I., Nishizawa,M., Fujita,E., Kiyono,T., Takahashi,T., Momoi,T., and Inagaki,M. (2001). Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. J Cell Biol. 155, 415-426. Janicke,R.U., Sprengart,M.L., Wati,M.R., and Porter,A.G. (1998). Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357-9360. Kottke,T.J., Blajeski,A.L., Meng,X.W., Svingen,P.A., Ruchaud,S., Mesner,P.W., Jr., Boerner,S.A., Samejima,K., Henriquez,N.V., Chilcote,T.J., Lord,J., Salmon,M., Earnshaw,W.C., and Kaufmann,S.H. (2002). Lack of correlation between caspase activation and caspase activity assays in paclitaxel-treated MCF-7 breast cancer cells. J. Biol. Chem. 277, 804-815. Ku,N.O., Liao,J., and Omary,M.B. (1998). Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. EMBO J. 17, 1892-1906. Ku,N.O., Liao,J., and Omary,M.B. (1997). Apoptosis generates stable fragments of human type I keratins. J Biol Chem. 272, 33197-33203. Ku,N.O., Michie,S., Oshima,R.G., and Omary,M.B. (1995). Chronic hepatitis, hepatocyte fragility, and increased soluble phosphoglycokeratins in transgenic mice expressing a keratin 18 conserved arginine mutant. J. Cell Biol. 131, 1303-1314. Ku,N.O. and Omary,M.B. (2001). Effect of mutation and phosphorylation of type I keratins on their caspase-mediated degradation. J Biol Chem. 276, 26792-26798. Ku,N.O. and Omary,M.B. (2000). Keratins turn over by ubiquitination in a phosphorylation-modulated fashion. J. Cell Biol. 149, 547-552. Lee,J.C., Schickling,O., Stegh,A.H., Oshima,R.G., Dinsdale,D., Cohen,G.M., and Peter,M.E. (2002). DEDD regulates degradation of intermediate filaments during apoptosis. J. Cell Biol. 158, 1051-1066. Leers,M.P.G., Kolgen,W., Bjorklund,V., Bergman,T., Tribbick,G., Persson,B., Bjorklund,P., Ramaekers,F.C.S., Bjorklund,B., Nap,M., Jornvall,N., and Schutte,B. (1999). Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J. Pathol. 187, 572. Li,H., Zhu,H., Xu,C.J., and Yuan,J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501. Li,P., Nijhawan,D., Budihardjo,I., Srinivasula,S.M., Ahmad,M., ,A.E.S., and Wang,X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. Lowthert,L.A., Ku,N.O., Liao,J., Coulombe,P.A., and Omary,M.B. (1995). Empigen BB: a useful detergent for solubilization and biochemical analysis of keratins. Biochem. Biophys. Res. Commun. 206, 370-379. Luo,X., Budihardjo,I., Zou,H., Slaughter,C., and Wang,X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. MacFarlane,M., Merrison,W., Dinsdale,D., and Cohen,G.M. (2000). Active caspases and cleaved cytokeratins are sequestered into cytoplasmic inclusions in TRAIL-induced apoptosis. J. Cell Biol. 148, 1239-1254. Mayeur,G.L., Fraser,C.S., Peiretti,F., Block,K.L., and Hershey,J.W. (2003). Characterization of eIF3k: a newly discovered subunit of mammalian translation initiation factor elF3. Eur J Biochem. 270, 4133-4139. Miramar,M.D., Costantini,P., Ravagnan,L., Saraiva,L.M., Haouzi,D., Brothers,G., Penninger,J.M., Peleato,M.L., Kroemer,G., and Susin,S.A. (2001). NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem. 276, 16391-16398. Moll,R., Franke,W.W., Schiller,D.L., Geiger,B., and Krepler,R. (1982). The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982 Nov;31(1):11-24. 31, 11-24. Muppidi,J.R., Tschopp,J., and Siegel,R.M. (2004). Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity. 21, 461-465. Nicholson,D.W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death. Differ. 6, 1028-1042. Nicholson,D.W. and Thornberry,N.A. (1997). Caspases: killer proteases. Trends Biochem. Sci. 22, 299-306. Omary,M.B., Coulombe,P.A., and McLean,W.H. (2004). Intermediate filament proteins and their associated diseases. N. Engl. J. Med. 351, 2087-2100. Omary,M.B., Ku,N.O., Liao,J., and Price,D. (1998). Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell. Biochem. 31, 105-140. Omary,M.B., Ku,N.O., and Toivola,D.M. (2002). Keratins: guardians of the liver. Hepatology 35, 251-257. Oshima,R.G. (2002). Apoptosis and keratin intermediate filaments. Cell Death. Differ. 9, 486-492. Pain,V.M. (1996). Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem. 236, 747-771. Phan,L., Zhang,X., Asano,K., Anderson,J., Vornlocher,H.P., Greenberg,J.R., Qin,J., and Hinnebusch,A.G. (1998). Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Mol. Cell Biol. 18, 4935-4946. Pincheira,R., Chen,Q., Huang,Z., and Zhang,J.T. (2001). Two subcellular localizations of eIF3 p170 and its interaction with membrane-bound microfilaments: implications for alternative functions of p170. Eur. J. Cell Biol. 80, 410-418. Porter,R.M. and Lane,E.B. (2003). Phenotypes, genotypes and their contribution to understanding keratin function. Trends Genet. 19, 278-285. Riedl,S.J. and Shi,Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5, 897-907. Rotonda,J., Nicholson,D.W., Fazil,K.M., Gallant,M., Gareau,Y., Labelle,M., Peterson,E.P., Rasper,D.M., Ruel,R., Vaillancourt,J.P., Thornberry,N.A., and Becker,J.W. (1996). The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat. Struct. Biol. 3, 619-625. Salvesen,G.S. and Renatus,M. (2002). Apoptosome: the seven-spoked death machine. Dev Cell. 2, 256-257. Schickling,O., Stegh,A.H., Byrd,J., and Peter,M.E. (2001). Nuclear localization of DEDD leads to caspase-6 activation through its death effector domain and inhibition of RNA polymerase I dependent transcription. Cell Death. Differ. 8, 1157-1168. Slee,E.A., Adrain,C., and Martin,S.J. (1999). Serial killers: ordering caspase activation events in apoptosis. Cell Death. Differ. 6, 1067-1074. Stegh,A.H., Schickling,O., Ehret,A., Scaffidi,C., Peterhansel,C., Hofmann,T.G., Grummt,I., Krammer,P.H., and Peter,M.E. (1998). DEDD, a novel death effector domain-containing protein, targeted to the nucleolus. EMBO J. 17, 5974-5986. Steller,H. (1995). Mechanisms and genes of cellular suicide. Science 267, 1445-1449. Stumptner,C., Fuchsbichler,A., Heid,H., Zatloukal,K., and Denk,H. (2002). Mallory body--a disease-associated type of sequestosome. Hepatology 35, 1053-1062. Sui,G., Soohoo,C., Affar,e.B., Gay,F., Shi,Y., Forrester,W.C., and Shi,Y. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. U. S. A 99, 5515-5520. Susin,S.A., Lorenzo,H.K., Zamzami,N., Marzo,I., Snow,B.E., Brothers,G.M., Mangion,J., Jacotot,E., Costantini,P., Loeffler,M., Larochette,N., Goodlett,D.R., Aebersold,R., Siderovski,D.P., Penninger,J.M., and Kroemer,G. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999 Feb 4;397(6718):441-6. 397, 441-446. Thompson,C.B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-1462. Thornberry,N.A. and Lazebnik,Y. (1998). Caspases: enemies within. Science 281, 1312-1316. Truong,K. and Ikura,M. (2001). The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr. Opin. Struct. Biol. 11, 573-578. Verhagen,A.M., Ekert,P.G., Pakusch,M., Silke,J., Connolly,L.M., Reid,G.E., Moritz,R.L., Simpson,R.J., and Vaux,D.L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000 Jul 7;102(1):43-53. 102, 43-53. Vojtek,A.B. and Hollenberg,S.M. (1995). Ras-Raf interaction: two-hybrid analysis. Methods Enzymol. 255, 331-342. Wang,X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922-2933. Wei,Z., Zhang,P., Zhou,Z., Cheng,Z., Wan,M., and Gong,W. (2004). Crystal structure of human eIF3k, the first structure of eIF3 subunits. J. Biol. Chem. 279, 34983-34990. Yahalom,A., Kim,T.H., Winter,E., Karniol,B., von Arnim,A.G., and Chamovitz,D.A. (2001). Arabidopsis eIF3e (INT6) associates with both eIF3e and the COP9 signalosome subunit CSN7. J Biol Chem. 276, 334-340. Yen,H.C., Gordon,C., and Chang,E.C. (2003). Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome. Cell 112, 207-217. Yuan,J. and Horvitz,H.R. (1992). The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development. 116, 309-320. Zatloukal,K., Stumptner,C., Fuchsbichler,A., Janig,E., and Denk,H. (2004). Intermediate filament protein inclusions. Methods Cell Biol. 78, 205-228. Zheng,T.S., Hunot,S., Kuida,K., and Flavell,R.A. (1999). Caspase knockouts: matters of life and death. Cell Death. Differ. 6, 1043-1053. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35020 | - |
| dc.description.abstract | 真核生物轉譯因子3k(eIF3k),分子量約28kDa,為真核生物之轉譯相關分子群中最小的亞分子。eIF3k在不同的物種間具有高度的演化保守性,在人類、小鼠、線蟲以及阿拉伯芥中均可找到同源相似物。在本篇論文中,我們並未觀察到eIF3k在一般轉譯過程中扮演著必要的角色,但卻發現了eIF3k具有另一特殊功能在細胞凋亡的調控上。首先,利用小片段干擾核甘酸 (siRNA) 抑制eIF3k的表現,發現可以降低細胞對死亡刺激的反應,這些刺激包括UV損傷以及STS (staurosporine)。更進一步,我們接櫫eIF3k影響細胞凋亡的分子機制。利用螢光蛋白標定及Trtiton 生化萃取分析,我們觀察到大部分的eIF3k會座落於角質蛋白8號 (K8) 和18號 (K18) 所共同組成的中間細絲網路 (intermediate filaments)。我們也證實這樣的現象是由於eIF3k和K8/K18會相互結合,不僅在利用免疫沉澱技術 (immunoprecipiation) 或酵母菌雙雜交系統 (yeast two hybrid) 的實驗上亦然。文獻指出,在細胞凋亡的過程中,K8/K18所形成的中間細絲網路會先崩塌形成包含體 (intracellular inclusion),之後,在細胞凋亡晚期則存在於細胞的cytoplasmic blebs。並且K8/K18會藉由和一些引發細胞凋亡的前驅分子有交互作用,進而調控細胞的死亡,我們因而推測eIF3k是否也藉由K8/K18而影響了細胞的計劃性死亡。因此在機制的剖析中,我們證明了eIF3k的存在與否會影響活化caspases在細胞凋亡過程中在細胞內的分布情形。所以我們初步推論, eIF3k對細胞凋亡的影響,主要藉由和活化的caspases共同競爭與K8/K18間的結合,進而改變活化的caspases在細胞中的分佈,而影響了caspases 和受質間作用的機會。 | zh_TW |
| dc.description.abstract | eIF3k, a 28 kDa protein, is the smallest subunit of eukaryotic translation initiation factor 3 complex and is evolutionally conserved among higher eukaryotes, including mammals, insects, worms and plants. However, genetic and biochemical studies failed to demonstrate an essential role of eIF3k in general translation. Here, we identified a novel function of eIF3k in promoting apoptosis, as knockdown of endogenous eIF3k could de-sensitize cells to several apoptotic stimuli, such as UV irradiation | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:38:58Z (GMT). No. of bitstreams: 1 ntu-94-R92448001-1.pdf: 1856968 bytes, checksum: bd5e09fd86a34f628977c318f8638a28 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Table of content 1
Abstract 3 中文摘要 4 Introduction 5 Apoptosis 5 Keratin intermediate filaments 9 Keratin intermediate filaments and apoptosis 11 eIF3k 15 Material & Methods 19 Cell lines and reagents 19 Induction of apoptosis 19 Western blotting and Antibodies 20 Immunofluorescence microscopy 20 FACS analysis 21 Yeast two-hybrid assay 21 Immunoprecipitation 22 Metabolic labeling 22 BrdU ELISA assay 23 Detergent extraction assay 23 FRET (Fluorescence resonance energy transfer) 24 Results 25 siRNA generation to knockdown eIF3k expression. 25 The effect of eIF3k in protein synthesis 26 The effect of eIF3k in cell growth 26 eIF3k’s function in apoptosis regulation 27 eIF3k colocalizes with the cytokeratin 8/18 28 eIF3k directly interacts with K18 in yeast 28 eIF3k associates with K8/K18 in vivo 29 The association of eIF3k with cytokeratin 8/18 filament proved by FRET image analysis 29 Endogenous eIF3k and K8/18 interact with each other. 30 The formation of eIF3k granular structure during apoptosis is caspase 3-dependent 31 eIF3k affects caspase distribution in Triton-soluble cytosolic fraction and Triton-insoluble cytoskeleton fraction. 32 Discussion 34 Reference List 39 Figures 46 Figure 1. Sequence alignment of eIF3k 46 Figure 3. A proposed model for the function of Ced-X. 48 Figure 4. eIF3k siRNA knockdowns the endogenous level of eIF3k. 49 Figure 5. Knockdown of eIF3k would not affect global protein synthesis. 50 Figure 6. Over-expression of eIF3k would not affect global protein synthesis. 51 Figure 7. Knockdown of eIF3k would not affect cell growth. 52 Figure 8. eIF3k knockdown attenuates UV-induced apoptosis.. 53 Figure 9. eIF3k knockdown attenuates Staurosporine(STS)-induced apoptosis.. 54 Figure 10. eIF3k subcellular localization 55 Figure 11. Interaction of eIF3k and K18 in yeast two-hybrid system. 56 Figure 12. eIF3k interacts with K18 in vivo. 57 Figure 13. eIF3k forms a complex with K8 in vivo. 58 Figure 14. Use of FRET methodology to assess in vivo protein interaction 59 Figure 15. Interaction of endogenous eIF3k with endogenous K8/K18 60 Figure 16. The eIF3k granular structures are caspase 3 dependent. 61 Figure 17. eIF3k affects caspase distribution in Triton-soluble cytosolic fraction and Triton-insoluble cytoskeleton fraction. 62 Figure 18. A proposed model for the function of eIF3k. 63 Appendix 64 Appendix I. The effect of eIF3k SiRNA in apoptosis is not observed in cells without cytokeratin 64 | |
| dc.language.iso | en | |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 角質蛋白8號 (K8) 和18號 (K18) | zh_TW |
| dc.subject | 真核生物轉譯因子3k | zh_TW |
| dc.subject | Apoptosis | en |
| dc.subject | eIF3k | en |
| dc.subject | cytokeratin K8/K18 | en |
| dc.title | eIF3k 調控細胞凋亡之分子機制與功能探討 | zh_TW |
| dc.title | Study of The Function and Molecular Mechanism of eIF3k in Apoptosis Regulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂勝春,許秉寧 | |
| dc.subject.keyword | 真核生物轉譯因子3k,細胞凋亡,角質蛋白8號 (K8) 和18號 (K18), | zh_TW |
| dc.subject.keyword | eIF3k,cytokeratin K8/K18,Apoptosis, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
