Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34996
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韋文誠
dc.contributor.authorTzu-Chi Kuoen
dc.contributor.author郭子期zh_TW
dc.date.accessioned2021-06-13T06:38:26Z-
dc.date.available2012-07-28
dc.date.copyright2011-07-28
dc.date.issued2011
dc.date.submitted2011-07-25
dc.identifier.citation[1] ”固體氧化物燃料電池”,pp. 419-514,燃料電池-原理與應用,衣寶廉,五南圖書出版股份有限公司,台北,2005。
[2] T. Horita and H. Yokokawa, “Solid Oxide Fuel Cells”; pp.140-173 in Materials for Energy Conversion Devices. Edited by C. C. Sorrell, S. Sugihara and J. Nowotny, Woodhead Publishing Limited, Cambridge, 2005.
[3] ”概論”,pp. 1-74,燃料電池(札記),馬承久,三民書局股份有限公司,台北,2008。
[4] “Altered Perspectives”; pp. 29-39 in Fuel cells, Engines and Hydrogen-An Exergy Approach. Writing by F. J. Barclay, John Wiley and Sons, Ltd., West Sussex, 2006.
[5] ”固態氧化物燃料電池”, pp. 6-1 - 6-44,燃料電池,黃鎮江,全華科技圖書股份有限公司,台北,2004。
[6] “Fuel Cell Economics and Prognosis”; pp.119-124 Fuel cells, Engines and Hydrogen-An Exergy Approach. Writing by F. J. Barclay, John Wiley and Sons, Ltd., West Sussex, 2006.
[7] “Solid Oxide Fuel Cells (SOFCs)”; pp.67-89 Fuel cells, Engines and Hydrogen-An Exergy Approach. Writing by F. J. Barclay, John Wiley and Sons, Ltd., West Sussex, 2006.
[8] N. M. Sammes, G. A. Tompsett, H. Näfe, and F. Aldinger, ‘Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity,’ J. Euro. Ceram. Soc., 19 [10] 1801-1826 (1999).
[9] A. M. Azad, S. Larose, and S. A. Akbar, ‘Bismuth Oxide-based Solid Electrolytes for Fuel Cells,’ J. Mater. Sci., 29 4135-4151 (1994).
[10] P. Shuk, H. D. Wiemhdferb, U. Guth, W. Gijpeld, and M. Greenblatt, ‘Oxide Ion Conducting Solid Electrolytes Based on Bi2O3,’ Solid State Ionics, 89 179-196 (1996).
[11] G. B. Hoflund, “Characterization Study of Oxidized Polycrystalline Tin Oxide Surfaces before and after Reduction in H2,” Chem. Mater., 6 562-568 (1994).
[12] B. C. H. Steele, “Oxygen Ion Conductors”; pp. 402-446 in High Conductivity Solid Ionic Conductors: Recent Trends and Applications. Edited by T. Takahashi, World Scientific, Singapore, 1989.
[13] W. L. Worrell, “The Solid-solubility Limits, Mixed-conductivity and Electrode Performance of Cation-doped Cubic YSZ”; pp. 75-89 in High Temperature Materials Division. Electrochemical Society Inc., Pennington, New Jersey, 2002
[14] K. E. Swider-Lyons, “Mixed Conducting Oxides in Electrochemical Power Sources”; pp. 124-131 in High Temperature Materials Division. Electrochemical Society Inc., Pennington, New Jersey, 2002
[15] “Introduction”; pp.1-16 in Advanced Methods of Solid Oxide Fuel Cell Modeling. Written by J. Milewsky, K. Swirski, M. Santarelli and P. Leone. Springer Verlag, London, 2011
[16] S. Hui and A. Petric, “Mixed Conductivity of Yttrium-doped Strontium Titanate under High Temperature Reducing Conditions”; pp. 67-74 in High Temperature Materials Division. Edited by T. A. Ramanarayanan, W. L. Worrell and M. Mogensen. Electrochemical Society Inc., Pennington, New Jersey, 2002
[17] H. A. Harwig and A. G. Gerards, “The Polymorphism of Bismuth Sesquioxide,” Thermochimica Acta, 28 121-131 (1979).
[18] M. Drache, P. Roussel and J. Wignacourt, “Structures and Oxide Mobility in Bi-Ln-O Materials: Heritage of Bi2O3,” Chem. Rev., 107 80-96 (2007).
[19] W. Li, “Facile Synthesis of Monodisperse Bi2O3 Nanoparticles,” Mater. Chem. Phys., 99 174–180 (2006).
[20] N. Cornei, N. Tancret, F. Abraham and O. Mentre, “New ε- Bi2O3 Metastable Polymorph,” Inorg. Chem., 45 4886-4888 (2006).
[21] C. N. R. Rao, G. V. Subba Rao, and S. Ramdas, “Phase Transformations and Electrical Properties of Bismuth Sesquioxide,” J. Phys. Chem., 73 672-675 (1969).
[22] V. V. Kharton, E. N. Naumovich, A. A. Yaremchenko and F. M. B. Marques, “Research on the Electrochemistry of Oxygen Ion Conductors in the Former Soviet Union IV. Bismuth Oxide-based Ceramics,” J Solid State Electrochem., 3 [5] 160-187 (2001).
[23] G. Gattow and H. Schroder, “Die Kristallsttruker der hochtemperaturemodifikation von Wismut (III)-oxid (δ-Bi2O3), Zeitschrift für Anorganishe und Allgemeine Chemie, 318 176-189 (1962).
[24] J. Schröder, N. Bagdassarova, F. Ritter and L. Bayarjargal, “Temperature Dependence of Bi2O3 Structural Parameters Close to the α–δ Phase Transition,” Phase Trans., 83 [5] 311–325 (2010).
[25] Yu. F. Kargin, N. I. Nelyapina, and V. M. Skorikov, “System Bi2O3–SnO2,” Physicochemical Studies of Equilibria in Solutions, 81–83 (1986).
[26] pp. 298–299 in Phase Diagrams of Refractory Oxide Systems: A Handbook, 5, 2. Edited by F. Ya. Galakhov, Nauka, Leningrad, 1986.
[27] N. A. Asryan, T. N. Koltsova, A. S. Alikhanyan, and G. D. Nipan, “Thermodynamics and Phase Diagram of the Bi2O3-SnO2 System,” J. Inorg. Mater., 38 [11] 1141–1147 (2002).
[28] pp. 125-129 in Phase Diagrams for Ceramics. Edited by E.M. Levin, C.R. Robbins and H.F. McMurdie, American Ceramic Society, Columbus, 1964
[29] H. A. Harwig and A. G. Gerards, “Electrical Properties of the α, β, γ, and δ Phases of Bismuth Sesquioxide,” j. solid state chem., 26 265-274 (1978).
[30] T. Takahashi, H. Iwahara and Y. Nagai, “High oxide ion conduction in sintered Bi2O3 containing SrO, CaO or La2O3,” J. Appl. Electrochem., 2 97-104 (1972).
[31] J. C. Boivin and G. Mairesse, ‘Recent Material Developments in Fast Oxide Ion Conductors,’ Chem. Mater., 10 2870-2888 (1998).
[32] A. Laarif and F. Theobald, ‘The Lone Pair Concept and the Conductivity of Bismuth Oxides Bi2O3,’ Solid State Ionics, 21 183-193 (1986).
[33] R. Murugaraj and G. Govindaraj, ‘Ac Conductivity Relaxation Processes and Its Scaling Behavior in Sodium Bismuthate Glasses,’ J. Mater. Sci., 37 5101-5106 (2002).
[34] F. Schröder and N. Bagdassarov, ‘Phase Transitions and Electrical Properties of Bi2O3 up to 2.5 GPa,’ Solid State Commun., 147 374–376 (2008).
[35] K. Z. Fung, H. D. Baek and A. V. Virkar, “Thermodynamic and Kinetic Considerations for Bi2O3-based electrolytes,” Solid State Ionics, 52 199-211 (1992).
[36] G. Müller, A. Heinzel, G. Schumacher and A. Weisenburger, “Control of Oxygen Concentration in Liquid Lead and Lead–bismuth,” J. Nucl. Mater., 321 256–262 (2003).
[37] E. D. Waschsman, G. R. Ball, N. Jiang, and D. A. Stevenson, ‘Structural and Defect Studies in Solid Oxide Electrolytes,’ Solid State Ionics, 52 213-218 (1992).
[38] J. R. Jurado, C. Moure, P. Duran and N. Valverde, ‘Preparation and Electrical Properties of Oxygen Ion Conductors in the Bi2O3-Y2O3 (Er2O3) Systems,’ Solid State Ionic, 28-30 518-523 (1988).
[39] M. J. Verkerk, K. Keizer and A. J. Burggraaf, “High Oxygen Ion Conduction in Sintered Oxides of the Bismuth Oxide-Erbium Oxide System,” J. Appl. Electrochem., 10 81-90 (1980).
[40] I. Abrahams, A. J. Bush, S. C. M. Chan, F. Krok and W. Wrobel, “Stabilisation and characterisation of a new βIII-phase in Zr-doped Bi2O3,” J. Mater. Chem., 11 1715-1721 (2001).
[41] T. Esaka, T. Mangahara, and H. Iwahara, “Oxide Ion Conductivity in the Sintered Oxides of the System Bi2O3-MO2 (M=Ti, Sn, Zr, Te),” Solid State Ionics, 36 129-132 (1989).
[42] K Sood, K Singh and O. P. Pandey, “Synthesis and Characterization of Bi-doped Zirconia for Solid Electrolyte,” Ionics 16 549–554 (2010).
[43] S. L. Sorokina and A. W. Sleight, “New Phase in the ZrO2-Bi2O3 and HfO2-Bi2O3 systems,” Mater. Res. Bull., 33 [7] 1077-1081 (1998).
[44] Č. Jovalekić, M. Zdujić, D. Polet, L. Karanović and M. Mitrić, “ Structural and Electrical Properties of the 2Bi2O3• 3ZrO2 system,” Solid State Chem., 181 1321– 1329 (2008).
[45] M. Zdujić, D. Poleti, Č. Jovalekić and L. Karanović, “Mechanochemical synthesis and electrical conductivity of nanocrystalline δ-Bi2O3 stabilized by HfO2 and ZrO2,” J. Serb. Chem. Soc., 74 [12] 1401–1411 (2009).
[46] “Structure of Ceramics”; pp. 1-99 in Physical Ceramics: Principles for Ceramic Science and Engineering. Written by Y. Chiang, D. P. Birnie, Ⅲ, and W. D. Kingery, John Wiley & Sons, Inc., New Jersey, 1997.
[47] Website, Merck Chemicals Taiwan (http://www.merck-chemicals.com.tw/), 2011/06/24.
[48] Website, Wikipedia (http://en.wikipedia.org/wiki/Main_Page), 2011/06/24.
[49] H. Okamoto, “O-Sn (Oxygen-Tin),” J. Phase Equilib. Diff., 27 [2] 202 (2006).
[50] A. Martel, F. Caballero-Briones, P. Bartolo-Pérez, A. Iribarren, R. Castro-Rodríguez, A. Zapata-Navarro and J.L. Pena, “Chemical and Phase Composition of SnOx:F Films Grown by DC Reactive Sputtering,” Surf. Coat. Tech., 148 103-109 (2001)
[51] I. R. Evans, J. A. K. Howard and J. S. O. Evans, “α-Bi2Sn2O7-a 176 Atom Crystal Structure from Powder Diffraction Data,” J. Mater. Chem., 13 2098-2103 (2003).
[52] R. H. Jones and K. S. Knight, “The Structure of γ-Bi2Sn2O7 at 725oC by High-resolution Neutron Diffraction: Implications for Bismuth(III)-containing Pyrochlores,” J. Chem. Soc., Dalton Trans., 15 2551–2555 (1997).
[53] R. D. Shannon, J. D. Berlein, J. L. Gillson, G. A. Jon and A. W. Sleight, “Polymorphsm in Bi2Sn2O7,” J. Phys. Chem. Solids, 41 [2] 117-122 (1980).
[54] 周家豪,鉍鈦釩系固態氧化物電解質之製備,大同大學材料工程研究所碩士論文,2010。
[55] C. H. Weng, W. C. J. Wei, “Synthesis and Properties of Homogeneous Nb-Doped Bismuth Oxide,” J. Am. Ceram. Soc., 93 [10] 3124-3129 (2010).
[56] Engineering Statistics. Written by D. C. Montgomery, G. C. Runger and N. F. Hubele, John Wiley & Sons, Inc, New Jersey, 2007.
[57] “Qualitative and Quantitative Analysis of Crystalline Powders”; pp. 505-565 in X-Ray Diffraction Procedures for Polycrystalline and Amorphous materials. Written by H. P. Klug and L. E. Alexander, John Wiley & Sons, Inc, New York, 1974.
[58] ”定性與定量分析”,pp. 301-322,X光繞射原理與材料結構分析,許樹恩,吳泰伯,中國材料科學學會,新竹,1996。
[59] “Quantitative Phase Analysis”; pp. 347-362 in Elements of X-Ray Diffraction. Written by B. D. Cullity and S. R. Stock, Prentice-Hall Inc., New Jersey, 2001.
[60] 李建樹,二矽化鉬/碳化矽複合材料之反應、燒結及性質硏究,國立臺灣大學材料科學與工程學硏究所碩士論文,1996。
[61] Introduction to the thermodynamics of materials. Written by D. R. Gaskell, Taylor & Francis Books, Inc., New York, 2003.
[62] ”燒結製程”,pp. 167-200,粉末冶金學,黃坤祥,粉末冶金協會,新竹,2003。
[63] Website, Moebius (http://www.moebius.com.my/Download/pdpchart.pdf), 2011/05/08.
[64] “Microstructure”; pp. 351-513 in Physical Ceramics: Principles for Ceramic Science and Engineering. Written by Y. Chiang, D. P. Birnie, Ⅲ, and W. D. Kingery, John Wiley & Sons, Inc., New Jersey, 1997.
[65] J. Siepmann and N.A. Peppas, “Modeling of Drug Release from Delivery Systems Based on Hydroxypropyl Methylcellulose (HPMC),” Adv. Drug Deliv. Rev., 48 139–157 (2001).
[66] T. Higuchi, “Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension,” J. Pharm. Sci., 50 74-875 (1961).
[67] G. Müller, A. Heinzel, G. Schumacher and A. Weisenburger, “Control of Oxygen Concentration in Liquid Lead and Lead–Bismuth,” J. Nucl. Mater., 321 256–262 (2003).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34996-
dc.description.abstract本研究添加少量(<10 mol%)二氧化錫至氧化鉍中,以膠粒製程與固態反應法合成並進行性質分析。研究目的包括了解添加二氧化錫對於氧化鉍的導電性質、抗還原性質的影響,並釐清既有氧化鉍-二氧化錫相圖彼此間的相異之處。X光繞射儀與熱差分析儀被用於研究添加二氧化錫之氧化鉍(BSO)樣品的相變行為,此外進行了密度量測、掃描式電子顯微鏡觀察、兩點電極電性量測以及重量損失實驗,以測試BSO樣品的性質。由分析結果重新繪製了新的氧化鉍-二氧化錫相圖。BSO樣品基本上為α相氧化鉍與錫酸鉍(Bi2Sn2O7)的雙相混合樣品,唯有添加1 mol%二氧化錫(1BSO)的樣品在燒結後形成介穩定的α-氧化鉍單一相。而1BSO也是導電性表現最好的BSO樣品,其於600oC的導電性為7.74×10-5 S/cm,而在650oC的導電性為1.78×10-4 S/cm。此外,在650oC、氧分壓為10-16 atm的還原氣氛下,1BSO樣品在80分鐘內仍保持氧化態不被還原。zh_TW
dc.description.abstractVarious Bi2O3 materials (BSO) doped with SnO2 up to 10 mol% have been synthesized by colloidal process and solid state reactions. The objectives are to study the effect of SnO2 dopant on the electrical conductivity and the stability of the BSO materials in reducing atmosphere. The discrepancies existing between the reported Bi2O3-SnO2 phase diagrams are also investigated. X-ray diffraction (XRD) and differential thermal analyzer (DTA) are used to investigate the phase transition behaviors of the BSO samples. Archimedes’ method, XRD, scanning electron microscope (SEM) observation, 2-probe conductivity measurement and mass loss test are used to study the properties of the samples. A revised Bi2O3-SnO2 phase diagram of 0~10 mol% SnO2 region is proposed. Most of sintered BSO samples consist of α-Bi2O3 and Bi2Sn2O7 phases. While the sintered 1 mol% SnO2-doped Bi2O3 (1BSO) is dense and shows single phase α-Bi2O3. The highest electrical conductivity at the range of 450~700oC were obtained by 1BSO sample, which was 7.74×10-5 S/cm at 600oC and 1.78×10-4 S/cm at 650oC. The most noteworthy advantage of SnO2-dopant is that it stabilizes the Bi2O3 matrix in reducing atmosphere in which the oxygen partial pressure is 10-16 atm (controlled by CO/CO2) at 650oC.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:38:26Z (GMT). No. of bitstreams: 1
ntu-100-R98527006-1.pdf: 9832591 bytes, checksum: 34e4d10f6998c66f08ee50bc073cdd2c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 I
Abstract II
List of Figures V
List of Tables VIII
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Bi2O3-based Materials as Electrolyte for SOFC 5
2.1.1 Criteria of Electrolyte for SOFC 5
2.1.2 Characterization of Bi2O3 6
2.1.3 Doped-Bi2O3 Materials for Development of SOFC Electrolyte 8
2.2 Tetravalent Cation-doped Bi2O3 Materials 15
2.2.1 ZrO2-doped Bi2O3 15
2.2.2 SnO2-doped Bi2O3 16
2.2.3 Other MO2-doped Bi2O3 materials 18
Chapter 3 Experimental Procedure 25
3.1 Materials 25
3.2 Processing of SnO2-doped Bi2O3 (BSO) Samples 25
3.2.1 SnO2 Slurry for Tests of Colloidal Properties 25
3.2.2 Colloidal Processing for BSO Sample 26
3.2.3 Calcination, Sintering and Quenching 26
3.2.4 Preparation of Bi2O3-Bi2Sn2O7 Mixed Standard 27
3.3 Characterization 27
3.3.1 Colloidal Property Test for SnO2 27
3.3.2 Differential Thermal Analysis (DTA) 28
3.3.3 X-ray Diffraction (XRD) analysis 29
3.3.4 Density Measurement 31
3.3.5 Microstructure Observation 31
3.3.6 Electrical Conductivity Measurement 32
3.3.7 Mass Loss Test 32
3.3.8 Oxygen Pressure in Reducing Atmosphere 33
Chapter 4 Results and Discussion 38
4.1 Colloidal Properties of SnO2 38
4.1.1 Dispersant for SnO2 38
4.1.2 Adequate Dispersion Period for SnO2 39
4.2 Bi2O3-SnO2 Phase Diagram 46
4.2.1 Phase Transition Temperatures of SnO2-doped Bi2O3 46
4.2.2 Phase Transformation of Bi2O3-SnO2 Composition 47
4.2.3 Revised Bi2O3-SnO2 Phase Diagram 48
4.3 Properties of Sintered BSO Samples 57
4.3.1 Sintered Density 57
4.3.2 Microstructure 57
4.3.3 Quantification of Phases in BSO sample 58
4.3.4 Electrical Conductivity 59
4.4 Effect of Atmosphere on BSO Sample 71
4.4.1 Mass Loss Behavior in Air 71
4.4.2 Mass Loss Behavior in Reducing Atmosphere 72
4.4.3 Electrical Conductivity in Reducing Atmosphere 74
Chapter 5 Conclusions 89
References 94
dc.language.isoen
dc.subject還原zh_TW
dc.subject氧化鉍zh_TW
dc.subject二氧化錫zh_TW
dc.subject相圖zh_TW
dc.subject導電性zh_TW
dc.subjectconductivityen
dc.subjectBi2O3en
dc.subjectSnO2en
dc.subjectreductionen
dc.subjectphase diagramen
dc.title1~10莫耳百分比氧化錫添加之氧化鉍作為固態電解質之研究zh_TW
dc.titleInvestigation of 1~10 mol% SnO2-doped Bi2O3 as Solid Electrolyteen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂福興,徐永富
dc.subject.keyword氧化鉍,二氧化錫,相圖,導電性,還原,zh_TW
dc.subject.keywordBi2O3,SnO2,phase diagram,conductivity,reduction,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2011-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
9.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved