請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34842完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Sung-Jan Lin | en |
| dc.contributor.author | 林頌然 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:35:27Z | - |
| dc.date.available | 2009-01-26 | |
| dc.date.copyright | 2006-01-26 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-01-12 | |
| dc.identifier.citation | Agrawal K, Agrawal A. Vitiligo: repigmentation with dermabrasion and thin split-thickness skin grafting. Dermatol Surg 21: 295-300, 1995.
Alanko T, Rosenburg M, Saksela O. FGF expression allows nevus cells to survive in three-dimensional collagen gel under conditions that induce apoptosis in normal human melanocytes. J Invest Dermatol 113: 111-116, 1999. Barbucci R, Magnani A, Lamponi S, Pasqui D, Bryan S. The use of hyaluronan and its sulphated derivative patterned with micrometric scale on glass substrate in melanocyte cell behaviour. Biomaterials 24: 915-926, 2003. Barth AI, Nathke IS, Nelson WJ. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 9: 683-690, 1997. Beck AJ, Phillips J, Smith-Thomas L, Short RD, MacNeil S. Development of a plasma-polymerized surface suitable for the transplantation of keratinocyte-melanocyte cocultures for patients with vitiligo. Tissue Eng 9: 1123-1131, 2003. Boissy RE, Nordlund JJ. Molecular basis of congenital hypopigmentary disorders in humans: a review. Pigm Cell Res 10: 12-24, 1997. Canalis E, McCarthy TL, Centrella M. Effects of platelet-derived growth factor on bone formation in vitro. J Cell Physiol 140: 530-537, 1989. Cerdan D, Redziniak G, Bourgeois CA, Monsigny M, Keida C. C32 human melanoma cell endogenous lectins: characterization and implication in vesicle-mediated melanin transfer to keratinocytes. Exp Cell Res 203: 164-173, 1992. ChenYF, Yang PY, Hung CM, Huang MH, Hu DN. Autotransplantation in segmental vitiligo by using cultured pure melanocytes: Analysis of 19 treated cases. Dermatol Sinica 17: 193-199, 1999. Chen YF, Chang JS, Yang PY, Hung CM, Huang MH, Hu DN. Transplant of cultured autologous pure melanocytes after laser-abrasion for the treatment of segmental vitiligo. J Dermatol 27: 434-439, 2000. Cheung HT, Terry DS. Effects of nocodazole, a new synthetic microtubule inhibitor, on movement and spreading of mouse peritoneal macrophages. Cell Biol Int Rep 4: 1125-1129, 1980. Cho YW, Cho YN, Chung SH, Yoo G, Ko SW. Water-soluble chitin as a wound healing accelerator. Biomaterials 20: 2139-2145, 1999. Chun M. Plasmin induces the formation of multicellular spheroids of breast cancer cells. Cancer Lett 117: 51-56, 1997. Chun M. Serum signaling factors and spheroids. Crit Rev Oncol Hematol 36: 89-98, 2000. Clark WA, Decker ML, Behnke-Barclay M, Janes DM, Decker RS. Cell contact as an independent factor modulating cardiac myocyte hypertrophy and survival in long-term primary culture. J Mol Cell Cardiol 30: 139-155, 1998. Corey JM, Feldman EL. Substrate patterning: an emerging technology for the study of neuronal behavior. Exp Neurol 184 Suppl 1: S89-96, 2003. Cui J, Shen LY, Wang GC. Role of hair follicles in the repigmentation of vitiligo. J Invest Dermatol 97: 410-416, 1991. Day ML, Zhao X, Vallorosi CJ, Putzi M, Powell T, Lin C, Day KC. E-cadherin mediates aggregation-dependent cell survival of prostate and mammary epithelial cells through the retinoblastoma cell cycle control pathway. J Biol Chem 274: 9656-9664, 1999. Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 22: 1241-1251, 2001. Dupin E, Le Douarin NM. Development of melanocyte precursors from the vertebrate neural crest. Oncogene 22: 3016-3023, 2003. Eisinger M, Marko O. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc Natl Acad Sci USA 79: 2018-2022, 1982. Falabella R. Repigmentation of segmental vitiligo by autologous minigrafting. J Am Acad Dermatol 9: 514-521, 1983. Falabella R. Treatment of localized vitiligo by autologous minigrafting. Arch Dermatol. 124: 1649-1655, 1988. Faucheux N, Correze C, Haye B, Nagel. Accumulation of cyclic AMP in Swiss 3T3 cells adhering to a cellulose biomaterial substratum through interaction with adenylyl cyclase. Biomaterials 22: 2993-2998, 2001. Francia G, Man S, Teicher B, Grasso L, Kerbel RS. Gene expression analysis of tumor spheroids reveals a role for suppressed DNA mismatch repair in multicellular resistance to alkylating agents. Mol Cell Biol 24: 6837-6849, 2004. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124: 619-626, 1994. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 116: 769-778, 2004. Gaforio JJ, Serrano MJ, Algarra I, Ortega E, Alvarez de Cienfuegos G. Phagocytosis of apoptotic cells assessed by flow cytometry using 7-Aminoactinomycin D. Cytometry 49: 8-11, 2002. Gilchrest BA, Albert LS, Karassik RL, Yaar M. Substrate influences human epidermal melanocyte attachment and spreading in vitro. In Vitro Cell Devel Biol 21: 114-120, 1985. Graham CH, Kobayashi H, Stankiewicz KS, Man S, Kapitain SJ, Kerbel RS. Rapid acquisition of multicellular drug resistance after a single exposure of mammary tumor cells to antitumor alkylating agents. J Natl Cancer Inst 86: 975-982, 1994. Grossmann J, Walther K, Artinger M, Kiessling S, Scholmerich J. Apoptotic signaling during initiation of detachment-induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ 12: 147-155, 2001. Gumbiner BM. Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 84: 345-357, 1996. Guerra L, Capurro S, Melchi F, Primavera G, Bondanza S, Cancedda R, Luci A, De Luca M, Pellegrini G. Treatment of 'stable' vitiligo by timedsurgery and transplantation of cultured epidermal autografts. Arch Dermatol 136: 1380-1389, 2000. Halaban R, Langdon R, Birchall N, Cuono C, Baird A, Scott G, Moellmann G, McGuire J. Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes. J Cell Biol 107: 1611-1619, 1988. Hara M, Yaar M, Gilchrest BA. Endothelin-1 of keratinocyte origin is a mediator of melanocyte dendricity. J Invest Dermatol 105: 744-748, 1995. Hearing VJ. Biochemical control of melanogenesis and melanosomal organization. J Invest Dermatol Symp Proc 4: 24-28, 1999. Horikawa T, Norris DA, Johnson TW, Zekman T, Dunscomb N, Bennion SD, Jackson RL, Morelli JG. Dopa-negative melanocytes in the outer root sheath of human hair follicles express premelanosomal antigens but not a melanosomal antigen or the melanosome-associated glycoproteins tyrosinase, TRP-1, and TRP-2. J Invest Dermatol 106: 28-35, 1996. Horwitz SB, Lothstein L, Manfredi JJ, Mellado W, Parness J, Roy SN, Schiff PB, Sorbara L, Zeheb R. Taxol: mechanisms of action and resistance. Ann NY Acad Sci 466: 733-744, 1986. Hsu MY, Wheelock MJ, Johnson KR, Herlyn M. Shifts in cadherin profiles between human normal melanocytes and melanomas. J Invest Dermatol Symp Proc 1: 188-194, 1996. Imokawa G, Yada Y, Miyagosh M. Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biol Chem 267: 24675-24680, 1992. Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, Yura H, Matsui T, Hattori H, Uenoyama M, Kurita A. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23: 833-840, 2002. Jimbow K, Sugiyama S. Melanosomal translocation and transfer, in: The Pigmentary System: Physiology and Pathophysiology, Nordlund JJ, Boissy RE, Hearing VJ, King RA, Eds., Oxford, Oxford University Press, pp. 107-114, 1998. Kahn AM, Cohen MJ, Kaplan L, Highton A. Vitiligo: treatment by dermabrasion and epithelial sheet grafting. J Am Acad Dermatol 33: 646-648, 1995. Kahn AM, Cohen MJ. Repigmentation in vitiligo patients. Melanocyte transfer via ultra-thin grafts. Dermatol Surg 24: 365-367, 1998. Kantak SS, Kramer RH. E-Cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J Biol Chem 273: 16953-16961, 1998. Khalil M, Shariat-Panahi A, Tootle R, Ryder T, McCloskey P, Roberts E, Hodgson H, Selden C. Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function. J Hepatol 34: 68-77, 2001. Kim SH, Hoshiba T, Akaike T. Effect of carbohydrates attached to polystyrene on hepatocyte morphology on sugar-derivatized polystyrene matrices. J Biomed Mater Res 67: 1351-1359, 2003. Kippenberger S, Bernd A, Bereiter-Hahn J, Ramirez-Bosca A, Kaufmann R. The mechanism of melanocyte dendrite formation: The impact of differentiating keratinocytes. Pigment Cell Res 11: 34-37, 1998. Koh JY, Choi DW. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20: 83-90, 1987. Koide N, Shinji T, Tanabe T, Asano K, Kawaguchi M, Sakaguchi K, Koide Y, Mori M, Tsuji T. Continued high albumin production by multicellular spheroids of adult rat hepatocytes formed in the presence of liver-derived proteoglycans. Biochem Biophys Res Commun 161: 385-391, 1989. Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, Takenami T, Shinji T, Mori M, Tsuji T. Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Exp Cell Res 186: 227-235, 1990. Koller MR, Palsson MA, Manchel I, Maher RJ, Palsson BO. Tissue culture surface characteristics influence the expansion of human bone marrow cells. Biomaterials 19: 1963-1972, 1998 Koo LY, Irvine DJ, Mayes AM, Lauffenburger DA, Griffith LG. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 115: 1423-1433, 2002. Korff T, Augustin HG. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J Cell Biol 143: 134-152, 1998. Korff T, Krauss T, Augustin HG. Three-dimensional spheroidal culture of cytotrophoblast cells mimics the phenotype and differentiation of cytotrophoblasts from normal and preeclamptic pregnancies. Exp Cell Res 297: 415-423, 2004 Kunz-Schughart LA. Multicellular tumor spheroids: intermediates between monolayer culture and in-vivo tumor. Cell Biol Int 23: 157-161, 1999. Lauffenburger DA, Horwitz AF. Cell migration: A physically integrated molecular process. Cell 84: 359-369, 1996. Lecoin L, Lahav R, Dupin E, Le Douarin N. Development of melanocytes from neural crest progenitors, in: Molecular Basis of Epithelial Appendage Morphogenesis, Chuong CM, Ed., Austin, Texas, U.S.A., R.G. Landes Company, pp. 131-154, 1998. Lontz W, Olsson MJ, Moellmann G, Lerner AB. Pigment cell transplantation for treatment of vitiligo: a progress report. J Am Acad Dermatol 30: 591-597, 1994. Lynch SE, Castella GR, Williams RC, Kiritsy CP, Howell TH, Reddy MS, Antoniades HN. The effects of short-term application of a combination of platelet-derived and insulin-like growth factors on periodontal wound healing. J Periodontol 62: 458-467, 1991. Malakar S, Dhar S. Treatment of stable and recalcitrant vitiligo by autologous miniature punch grafting: a prospective study of 1,000 patients. Dermatology 198: 133-139, 1999. Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22: 165-173, 2001. Moellmann G, Halaban R. Growth factor receptors and signal transduction regulating the proliferation and differentiation of melanocytes, in: The Pigmentary System: Physiology and Pathophysiology, Nordlund JJ, Boissy RE, Hearing VJ, King RA, Eds., Oxford, Oxford University Press, pp. 135-149, 1998. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application of proliferation and cytocoxicity assays. J Immunol Methods 65: 55-63, 1983. Muzzarelli RA, Mattioli-Belmonte M, Pugnaloni A, Biagini G. Biochemistry, histology and clinical uses of chitins and chitosans in wound healing. EXS 87: 251-264, 1999. Nagafuchi A, Takeichi M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J 7: 3679–3684, 1988. Nakazawa K, Nakazawa H, Collombel C, Damour O. Keratinocyte extracellular matrix-mediated regulation of normal human melanocyte function. Pigment Cell Res 8: 10-18, 1995. Nesbit M, Nesbit HKE, Bennett J, Andl T, Hsu MY, Dejesus E, McBrian M, Gupta AR, Eck SL, Herlyn M. Basic fibbroblast growth factor induces a transformed phenotype in normal human melanocytes. Oncogene 18: 6469-6476, 1999. Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416: 854-860, 2002. Nishimura EK, Granter SR, Fisher DE. Mechanisms of hair graying: Incomplete melanocyte stem cell maintenance in the niche. Science 307: 720-723, 2005. Njoo MD, Westerhof W, Bos JD, Bossuyt PMM. The development of guidelines for treatment of vitiligo. Arch Dermatol 135: 1514-1521, 1999. Nordlund JJ, Ortonne JP. Vitiligo vulgaris, in: The Pigmentary System: Physiology and Pathophysiology, Nordlund JJ, Boissy RE, Hearing VJ, King RA, Eds., Oxford, Oxford University Press, pp. 513-551, 1998. Norris DA, Morelli JG, Fujita M. Melanocyte interactions in the skin, in: The Pigmentary System: Physiology and Pathophysiology, Nordlund JJ, Boissy RE, Hearing VJ, King RA, Eds., Oxford, Oxford University Press, pp. 123-133, 1998. Ortonne JP, Schmitt D, Thivolet J. PUVA-induced repigmentation of vitiligo: Scanning electron microscopy of hair follicles. J Invest Dermatol 74:40-42, 1980. Park JB, Matsuura M, Han KY, Norderyd O, Lin WL, Genco RJ, Cho MI. Periodontal regeneration in class III furcation defects of beagle dogs using guided tissue regenerative therapy with platelet-derived growth factor. J Periodontol 66:462-477, 1995. Purpura KA, Aubin JE, Zandstra PW. Sustained in vitro expansion of bone progenitors is cell density dependent. Stem Cells 22:39-50, 2004 Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4: 1457-1465, 2003. Ranson M, Posen S, Mason RS. Extracellular matrix modulates the function of human melanocytes but not melanoma cells. J Cell Physiol 136: 281-288, 1988. Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 34:21-28, 1997. Raff MC. Social control on cell survival and cell death. Nature 356:397–400, 1992. Rawles ME. The development of melanophores from embryonic mouse tissue grown in the coelom of chick emcbyos. Proc Natl Adad Sci USA 26: 673-680, 1940. Rawles ME. Origin of pigment cells from neural crest in the mouse embryo. Physiol Zool 20: 248-266, 1947. Reedy MV, Parichy DM, Erickson CA, Mason KA, Frost-Mason SK. Regulation of melanoblast migration and differentiation, in: The Pigmentary System: Physiology and Pathophysiology, Nordlund JJ, Boissy RE, Hearing VJ, King RA, Eds., Oxford, Oxford University Press, pp. 75-95, 1998. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707-10, 1992a. Reynolds BA, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produses neurons and astrocytes. J Neurosci 12: 4565-4574, 1992b. Reynolds BA, Weiss S. Clonal and population analysis demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175: 1-13, 1996. de Ridder L, Cornelissen M, de Ridder D. Autologous spheroid culture: a screening tool for human brain tumour invasion. Crit Rev Oncol Hematol 36 107-122, 2000. Romero-Graillet C, Aberdam E, Clement M, Ortonne JP, Ballotti R. Nitric oxide produced by ultraviolet-irradiated keratinocytes stimulates melanogenesis. J Clin Invest 99: 635-642, 1997. Rutherford RB, Niekrash CE, Kennedy JE, Charette MF. Platelet- derived and insulin-like growth factors stimulate regeneration of periodontal attachment in monkeys. J Periodont Res 27: 285-290, 1992. Saavedra YG, Mateescu MA, Averill-Bates DA, Denizeau F. Polyvinylalcohol three-dimensional matrices for improved long-term dynamic culture of hepatocytes. J Biomed Mater Res 66A:562-570, 2003 Santini MT, Rainaldi G, Indovina PL. Review: multicellular tumor spheroids in radiation biology. Int J Radiat Biol 75: 787-799, 1999. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 182: 311-22, 2000. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, Shapiro SS. Inhibition of melanosome transfer results in skin lightening. J Invest Dermatol 115: 162-167, 2000. Shelton RM, Rasmussen AC, Davies JE. Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts. Biomaterials 9: 24-29, 1988. Slominski A, Paus R, Plonka P, Maurer M, Chakraborty A, Pruski D, Lukiewicz S. Melanogenesis during the anagen-catagen-telogen transformation of the murine hair cycle. J Invest Dermatol 102: 862-869, 1994. Slominski A, Wortsman J, Plonka PM, Schallreuter KU, Paus R, Tobin DJ. Hair follicle pigmentation. J Invest Dermatol 124: 13-21, 2005. Smets FN, Chen Y, Wang LJ, Soriano HE. Loss of cell anchorage triggers apoptosis (anoikis) in primary mouse hepatocytes. Mol Genet Metab 75: 344-352, 2002. Staricco RG. Activation of amelanotic melanocytes in the outer root sheath of the hair follicle following ultraviolet exposure. J Invest Dermatol 39: 163-164, 1962. Stone CA, Wright H, Clarke T, Powell R, Devaraj VS. Healing at skin graft donor sites dressed with chitosan. Brit J Plast Surg 53: 601-606, 2000. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21: 2589-2598, 2000. Szabo I, Wetzel MA, Rogers TJ. Cell-density-regulated chemotactic responsiveness of keratinocytes in vitro. J Invest Dermatol 117:1083-1090, 2001. Tang A, Eller MS, Hara M, Yaar M, Hirohashi S, Gilchrest BA. E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci 107: 983-992, 1994. Thomas PD, Kishi H, Cao H, Ota M, Yamashita T, Singh S, Jimbow K. Selective incorporation and specific cytocidal effect as the cellular basis for the antimelanoma action of sulphur containing tyrosine analogs. J Invest Dermatol 113: 928-934, 1999. Tzanakakis ES, Hansen LK, Hu WS. The role of actin filaments and microtubules in hepatocyte spheroid self-assembly. Cell Motil Cytoskeloton 48: 175-189, 2001. Wakatsuki T, Schwab B, Thompson NC, Elson EL. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci 114: 1025-1036, 2003. Wang JH, Yao CH, Chuang WY, Young TH. Development of biodegradable polyesterurethane membranes with different surface morphologies for the culture of osteoblasts, J Biomed Mater Res 51: 761-770, 2000. Yamazaki F, Okamoto H, Matsumura Y, Tanaka K, Kunisada T, Takeshi Horio T. Development of a new mouse model (xeroderma pigmentosum A-deficient, stem Cell factor-transgenic) of ultraviolet B-induced melanoma. J Invest Dermatol 125: 521-525, 2005. Yaar M, Gilchrest BA. Human melanocyte growth and differentiaion: a decade of new data. J Invest Dermatol 97: 711-717, 1991. Yaar M, Grossman K, Eller M, Gilchrest BA. Evidence for nerve growth factor-mediated paracrine effects in human epidermis. J Cell Biol 115: 821-828, 1991. Yaar M, Eller MS, DiBenedetto P, Reenstra WR, Zhai S, McQuaid T, Archambault M, Gilchrest BA. The trk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes. J Invest Dermatol 94: 1550-1562, 1994. Yaar M. Vitiligo: the evolution of cultured epidermal autografts and other surgical treatment modalities. Arch Dermatol 137: 348-349, 2001. Young TH, Yao CH, Sun JS, Lai CP, Chen LW. The effect of morphology variety of EVAL membranes on the behavior of myoblasts in vitro. Biomaterials 19: 717-724, 1998. Young TH, Huang JH, Huang SH, Hsu JP. The role of cell density in the survival of cultured cerebellar granule neurons. J Biomed Mater Res 52: 748-753, 2000. Young TH, Lin CW, Cheng LP, Hsieh CC. Preparation of EVAL membranes with smooth and particulate morphologies for neuronal culture. Biomaterials 22: 1771-1777, 2001. Yu HS. Melanocyte destruction and repigmentation in vitiligo: a model for nerve cell damage and regrowth. J Biomed Sci 9: 564-573, 2002. Yu HS, Wu CS, Yu CL, Kao YH, Chiou MH. Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo. J Invest Dermatol 120: 56-64, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34842 | - |
| dc.description.abstract | 本研究之主要目的是設計以幾丁聚醣為高分子基材之黑色素細胞貼片,以應用於治療白斑之黑色素細胞移植。在研發黑色素細胞貼片的過程中,我們發現人類黑色素細胞在幾丁聚醣上有一新的生長方式,即形成立體多細胞的黑色素細胞球。
我們首先探討黑色素細胞在幾丁聚醣上的生長貼附情形及黑色素細胞球的形成條件。我們發現,黑色素細胞在幾丁聚醣上貼附良好。幾丁聚醣可以維持黑色素細胞的生長、型態及黑色素表現。而影響黑色素細胞球形成的因素中,最重要的是細胞的播灑密度。在超過一定的細胞播灑密度之下,黑色素細胞會逐漸形成多細胞聚集,進而形成黑色素細胞球。黑色素細胞球的形成需要完整的細胞骨架包括肌動蛋白及微管,而血清因子在此過程中並非必要。 以連續照相的方式記錄黑色素細胞在幾丁聚醣上的行為時,我們發現黑色素細胞在幾丁聚醣上有較快的移行速度。細胞密度增加可以促進細胞間的接觸,細胞進而藉由移行而聚集成黑色素細胞球。在加入抗E-cadherin的單株抗體後,黑色素無法形成黑色素細胞球。此外,黑色素細胞在剛形成細胞球時,球內的黑色素細胞仍保有細胞分裂能力。因此要形成多細胞球的條件包括細胞必須能夠在生醫材料上有積極的運動及細胞必須有充分的表面黏著分子。黑色素細胞球內的細胞分裂對於黑色素細胞球增大也有貢獻。 功能上,黑色素細胞球內的細胞,超過百分之九十五都保有細胞活性。黑色素細胞球內的黑色素細胞,仍有黑色素表現。因此黑色素細胞球內的細胞仍具有黑色素細胞的表型。當黑色素細胞球接觸到第一型膠原蛋白後,黑色素細胞球漸漸崩解,細胞又恢復成單層多樹突狀的黑色素細胞。為模擬黑色素細胞在移植時可能遭遇的不良環境,我們將細胞置於缺乏血清及生長因子的條件中測試。一般在此環境中,黑色素細胞活性會快速減低。令人驚訝的是,在血清及生長因子缺乏的不良環境中,黑色素細胞球較單層多樹突黑色素細胞有較佳的存活。因此,以幾丁聚醣培養黑色素細胞球的方式,在移植過程中可以提供黑色素細胞一存活優勢。 我們的研究顯示將黑色素細胞在幾丁聚醣上先培養成黑色素細胞球後,可能可以增進移植成功率。而黑色素細胞在幾丁聚醣上的行為也可當作一模型應用在其他生醫領域,用以研究多細胞自行聚集成立體結構的過程。 | zh_TW |
| dc.description.abstract | Vitiligo is characterized by destruction of melanocytes in the epidermis. In this study, we develop a chitosan-based melanocyte patch transplant for vitiligo treatment. In the development of melanocyte patch, a unique phenomenon of human melanocytes is revealed: formation of multicellular spheroids on chitosan surface.
We characterize the attachment and growth of human melanocytes as well as the conditions for melanocyte spheroid formation on chitosan surface. Melanocytes have good attachment to chitosan and chitosan is able to support the growth and phenotype expression of melanocytes. Melanocytes spontaneously aggregate and grow into multicellular spheroids when cells are seeded above a critical seeding density. We further demonstrate that spheroid formation requires intact actin and microtubule networks and serum-derived factors are not essential for this process. By use of time-lapse microscopy, we find that, in comparison with melanocytes on tissue culture polystyrene plates, melanocytes migrate faster on chitosan. With increasing seeding densities which enable frequent intercellular contact, cells translocate and aggregate into spheroids. By disrupting surface E-cadherin with monoclonal antibody, melanocyte spheroid formation is inhibited. Moreover, cells within the spheroids are still proliferative when initial spheroids are formed. Hence, active migration on biomaterials and abundant cell surface adhesion molecules that hold cells together are indispensable for melanocyte spheroid formation. Cell proliferation within the spheroids also contributes to the enlargement of spheroids. Functionally, more than 95% of the cells in the spheroids are viable and the cells within the spheroids produce melanin in the cytoplasm. After being seeded on collagen I coated surface, spheroids disintegrate gradually and melanocytes grow back to a physiological dendritic morphology. To simulate the stringent conditions that melanocytes may encounter during transplantation, cells are tested in a serum and growth factor deprived condition which usually compromises melanocyte viability quickly. Surprisingly, compared with the survival of monolayered melanocytes, cell survival of melanocyte spheroids is much enhanced. Hence, culturing melanocytes into spheroids on chitosan surface can provide melanocytes a survival advantage. Our results suggest that chitosan-based melanocyte spheroid patch may increase the engraftment rates during melanocyte transplantation. In addition, the interaction of melanocytes with chitosan can serve as a model for investigation of the self-assembly process of cells in biomedical researches. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:35:27Z (GMT). No. of bitstreams: 1 ntu-95-D92548003-1.pdf: 7376405 bytes, checksum: 280055c8e4cd326b1c0ea9a018c45b32 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Contents
摘要 I Abstract III Contents VI Figures X Chapter 1. Introduction 1 1-1. Melanocytes 1 1-2. Vitiligo and non-invasive treatment for vitiligo 2 1-3. Surgery and autologous melanocyte transplantation for vitiligo treatment 5 1-4. Drawbacks of cultured melanocyte suspension in melanocyte transplantation 7 1-5. Concept of a melanocyte patch 8 1-6. Selection of chitosan as the membranous part of melanocyte patch 9 1-7. Hypothesis, aims and overall design of this study 11 Chapter 2. Behavior of melanocytes on chitosan surface and the conditions for melanocyte spheroid formation 14 2-1. Introduction 14 2-2. Materials and methods 15 2-2-1. Preparation of culture wells coated with chitosan membrane 15 2-2-2. Cell culture and assays for cell attachment and growth 15 2-2-3. Cell morphology 17 2-3. Results 19 2-3-1. Cell attachment and spreading 19 2-3-2. Cell growth 21 2-3-3. Seeding density-dependent formation of melanocyte spheroids on the chitosan-coated surfaces 22 2-3-4. Scanning electron micrographs of melanocyte spheroids 29 2-4. Discussion 30 Chapter 3. Mechanism of melanocyte spheroid formation 34 3-1. Introduction 34 3-2. Materials and methods 37 3-2-1. Preparation of chitosan-coated wells and plates 37 3-2-2. Cell culture 37 3-2-3. Effect of serum concentrations on spheroid forming activity and cell growth of human melancoytes on chitosan surface 37 3-2-4. Determination of the proliferative status of cells in the melanocyte spheroids 38 3-2-5. Time-lapse microscope, melanocyte migration assay and dynamic process of melanocyte spheroid formation 39 3-2-6. The effect of cytochalasin-D, nocodazole, and taxol on melanocyte spheroid formation 40 3-2-7. The role of surface adhesion molecule in melanocyte spheroid formation 40 3-3. Results 42 3-3-1. The role of serum factors in melanocyte spheroid formation and cell growth on chitosan surface 42 3-3-2. Proliferative status of cells in the melanocyte spheroids 45 3-3-3. Melanocytes are highly motile on chitosan surface 46 3-3-4. The dynamic process of melanocyte spheroid formation 48 3-3-5. The role of cytoskeleton in melanocyte spheroid formation 51 3-3-6. The role of E-cadherin in melanocyte spheroid formation 53 3-4. Discussion 55 Chapter 4. Functional analysis of melanocyte spheroids 60 4-1. Introduction 60 4-2. Materials and methods 61 4-2-1. Preparation of culture wells coated with chitosan and cell culture 61 4-2-2. Quantification of cell number and viability in melanocyte spheroids 61 4-2-3. Functional preservation of melanocytes in melanocyte spheroids 62 4-2-4. Cell death assays and cell survival assays in serum and growth factor deprivation condition 62 4-2-5. Response of melanocyte spheroids on collagen-coated surface 63 4-3. Results 65 4-3-1. Viability of cells in the melanocyte spheroid 65 4-3-2. Reseeding cells from melanocyte spheroids on tissue culture polystyrene plate 65 4-3-3. Functional preservation of melanocytes in the spheroids 65 4-3-4. Survival advantage of melanocyte spheroids in growth factor and serum deprived condition 67 4-3-5. Spheroidal melanocytes remain aggregated in growth factor and serum deprived condition 74 4-3-6. Melanocyte spheroids are capable of growing into monolayered dendritic melanocytes when they are inoculated on collagen I coated surface 76 4-4. Discussion 78 Chapter 5. Conclusion and perspective 84 5-1. Conclusion 84 5-2. Perspective 85 Chapter 6. Reference 86 | |
| dc.language.iso | en | |
| dc.subject | melanocyte patch | en |
| dc.subject | chitosan | en |
| dc.subject | melanocyte | en |
| dc.subject | vitiligo | en |
| dc.subject | spheroid | en |
| dc.subject | cell migration | en |
| dc.subject | melanocyte transplantation | en |
| dc.title | 人類黑色素細胞在幾丁聚醣上之行為:從單層細胞到立體多細胞球 | zh_TW |
| dc.title | Behavior of human melanocytes on chitosan: from monolayer to three-dimensional spheroids | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 紀秀華(Shiou-Hwa Jee) | |
| dc.contributor.oralexamcommittee | 賴君義,宋信文,劉華昌,余幸司,王盈錦 | |
| dc.subject.keyword | 黑色素細胞,幾丁聚醣,黑色素細胞貼片,細胞球,細胞移行,白斑,黑色素細胞移植, | zh_TW |
| dc.subject.keyword | melanocyte,chitosan,melanocyte patch,spheroid,cell migration,vitiligo,melanocyte transplantation, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-01-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 7.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
