Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34837
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭?堅(Kenneth James Palmer)
dc.contributor.authorCheng-Wen Tsaien
dc.contributor.author蔡承文zh_TW
dc.date.accessioned2021-06-13T06:35:22Z-
dc.date.available2006-01-19
dc.date.copyright2006-01-19
dc.date.issued2006
dc.date.submitted2006-01-13
dc.identifier.citation[1] AitSahlia,F.,L.Imhof,and T.L.Lai.[2003]: Fast and Accurate Valuation of American Barrier Options. Journal of Computational Finance, vol.7,pp.129-145.
[2] AitSahlia,F.,L.Imhof,and T.L.Lai.[2004]: Pricing and Hedging of American Knock-In Option. The Journal of Derivatives,Spring,44-50.
[3] Bjork,T[1998]: Arbitrage Theory in Continuous Time. OXFORD.
[4] Boyle, P., Lau, S.H.,[1994].: Bumping up against the barrier with the binomial method. Journal of Derivatives 2,6-14.
[5] Cheuk, T.H.F., Vorst, T.C.F.,[1996].: Complex barrier options. Journal of Derivatives 4, 8-22.
[6] Etheridge,A.[2002]: A Course in Financial Calculus. University of Oxford
[7] Geman, H.&M.Yor,[1996]: Pricing and Hedging double barrier options: A probabilistic approach, Mathematical Finance 6,365-378.
[8] Gao,B.&Figlewski,S[1999].: The adaptive mesh model: a new approach to efficient option pricing. Journal of Financial Economics 53 313-351.
[9] Gao,B.,Huang,J.Z.&Subrahmanyam,M.[2000].: The Valuation of American barrier options using the decomposition technique. Journal of Economic Dynamics and Control,24,1783-1827.
[10] Haug, E. G. [2001].: Closed form valuation of American barrier options.International Journal of Theoretical and Applied Finance,4,355-359.
[11] Harrison, M.J.[1985]: Brownian Motion and Stochastic Flow Systems.Wiley.
[12] Kwok, Y.K.[1998]: Mathematical Models of Financial Derivatives,Springer.
[13] Kwok, Y.K.,& Dai, M.[2004]: Knock-in American Options. The Journal of Futures Markets, Vol.24,No. 2,179-192
[14] Karatzas, I. & Shreve, S.[1988]: Brownian Motion and Stochastic Calculus. Springer Verlag, New York Heidelberg Berlin.
[15] Karatzas, I. & Shreve, S.[1998]: Methods of mathematical finance,Springer, New York.
[16] N.H. Bingham and R. Kiesel[2004]: Risk-Neutral Valuation: Pricing and Hedging of Financial Derivatives Second Edition, Springer.
[17] Reimer,M. and Sandmann,K[1995]: A Discrete Time Approach For European and American Barrier Options, SFB303 Discussion Paper
B272, http://ideas.repec.org/p/bon/bonsfb/272html
[18] Revuz, D. and M. Yor[1991]: Continuous martingales and Brownian motion, Springer, New York.
[19] Ritchken, P.,[1995]: On pricing barrier options. Journal of Derivatives 3,19-28.
[20] Zhang, P.G.[1997]: Exotic Options. World Scientific , Singapore.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34837-
dc.description.abstract美式障礙選擇權是依照過去股價是否碰觸障礙價格,來衡量此選
擇權是否失效或生效。在Black-Scholes 的假設之下,我們利用Feynamn-Kac的方法推導美式選擇權的評價公式,並且更進一步推倒各種美式障礙選擇權的評價公式。因為美式選擇權與美式障礙選擇權的提早履約邊界有所不同,故可以推出美式障礙選擇權的in-out parity不存在。
zh_TW
dc.description.abstractAn American barrier option is an option contract in which the option holder receives an American option or becomes nullified conditional on the underlying stock price touching a barrier level. We use the Feynamn-Kac method to value American options and present analytic valuation formulas for American under the Black-Scholes pricing framework. Because the early exercise boundary of the American barrier option is different from the early exercise boundary of the vanilla American option, we claim the in-out parity does not hold.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:35:22Z (GMT). No. of bitstreams: 1
ntu-95-R92221009-1.pdf: 632041 bytes, checksum: bf1b8a70f17ae412829c4d8047128f83 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents ii
Acknowledgements v
Abstract in Chinese vi
Abstract vii
I.INTRODUCTION 1
II. DECOMPOSITION FORMULAS FOR AMERICAN OPTION 6
III. AMERICAN DOWN-OUT CALLS AND UP-OUT PUTS 12
3.1 Early exercise boundary for American down-out calls, up-out puts 12
3.2 Decomposition Formula for American down-out calls, up-out puts 16
3.3 The possibility of early exercise for American down-out call when there is no dividend 27
IV. AMERICAN DOWN-IN CALLS AND UP-IN PUTS 33
4.1 Decomposition Formula for American down-in calls, up-in puts 33
4.2 In-out barrier parity relation for American barrier options 43
V. CONCLUSION 50
Appendix 51
References 53
dc.language.isoen
dc.subject美式障礙選擇權zh_TW
dc.subject美式選擇權zh_TW
dc.title美式障礙選擇權zh_TW
dc.titleAmerican Barrier Optionen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宜良(I-Liang Chern),姜祖恕(Tzuu-Shuh Chiang)
dc.subject.keyword美式選擇權,美式障礙選擇權,zh_TW
dc.subject.keywordAmerican Option,American Barrier Option,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2006-01-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
617.23 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved