Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34825
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳維鈞(Wei-June Chen),吳文哲(Wen-Jer Wu)
dc.contributor.authorChin-Gi Huangen
dc.contributor.author黃旌集zh_TW
dc.date.accessioned2021-06-13T06:35:12Z-
dc.date.available2009-01-26
dc.date.copyright2006-01-26
dc.date.issued2005
dc.date.submitted2006-01-16
dc.identifier.citationAl-Olayan, E. M., A. L. Beetsma, G. A. Butcher, R. E. Sinden, and H. Hurd. 2002. Complete development of mosquito phases of the malaria parasite in vitro. Science 295: 667-679.
Alder, S., and W. Mayrink. 1961. A gregarine, Monocystis chagasi n. sp. of Phlebotomus longipalpis: Remarks on the accessory gland of P. longipalpis. Rev. Med. Trop. São Paulo 3: 230-238.
Anserson, R. G. W., and L. Orci. 1988. A view of acidic intracellular compartment. J. Cell Biol. 106: 539-543.
Azuma, M., W. R. Harvey, and H. Wieczorek. 1995. Stoichiometry of K+/H+ antiport helps to explain extracellular pH 11 in a model epithelium. FEBS Lett. 361: 153-156.
Barreau, C., M. Touray, P. F. Pimenta, L. H. Miller, and K. D. Vernick. 1995. Plasmidium gallinaceum: Sporozoite invasion of Aedes aegypti salivary gland is inhibited by anti-gland antibodies and by lectins. Exp. Parasitol. 81: 332-343.
Baton, L. A., and L. C. Ranford-Cartwright. 2004. Plasmodium falciparum ookinete invasion of the midgut epithelium of Anopheles stephensi is consistent with the Time Bomb model. Parasitology 129: 663-676.
Beier, J. C. 1983. Effects of gregarine parasites on the development of Dirofilaria immitis in Aedes triseriatus. J. Med. Entomol. 20: 70-75.
Beier, J. C., and G. B. Craig, Jr. 1985. Gregarine parasite of mosquito. pp. 167-184. In: M. Laird, ed. Integrated Mosquito Control Methodologies, Vol. 2. Academic Press, London.
Boudko, D. Y., L. L. Moroz, W. R. Harvey, and P. J. Linser. 2001a. Alkalinization by chloride/bicarbonate pathway in larval mosquito midgut. Proc. Natl. Acad. Sci., U.S.A. 98: 15354-15359.
Boudko, D. Y., L. L. Moroz, P. J. Linser, J. R. Trimarchi, P. J. Smith, and W. R. Harvey. 2001b. In situ analysis of pH gradients in mosquito larvae using non-invasive, self-referencing, pH-sensitive microelectrodes. J. Exp. Biol. 204: 691-699.
Bowman, E. J., A. Sieber, and K. Altendorf. 1988. Bafilomycin A1: a class of inhibitors of membrane ATPase from microorganisms, animal cells, and plant cells. Proc. Natl. Acad. Sci., U.S.A. 85: 7972-7976.
Castagna, M., C. Shayakul, D. Trotti, V. F. Sacchi, W. R. Harvey, and M. A. Hediger. 1998. Cloning and characterization of a potassium-coupled amino acid transporter. Proc Natl. Acad. Sci., U.S.A. 95: 5395-5400.
Castilla, V., L. M. Palermo, and C. E. Coto. 2001. Involvement of vacuolar proton ATPase in Junin virus multiplication. Arch. Virol. 146: 251-263.
Chen, W. J. 1999. The life cycle of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae). Parasitol. Today 15: 153-156.
Chen, W. J., and C. H. Yang. 1996. Developmental synchrony of Ascogregarina taiwanensis within Aedes albopictus. J. Med. Entomol. 33: 212-215.
Chen, W. J., C. Y. Chow, and S. T. Wu. 1997a. Ultrastructure of infection, development and gametocyst formation of Ascogregarina taiwanensis in its mosquito host, Aedes albopictus. J. Eukaryot. Microbiol. 44: 101-108.
Chen, W. J., S. T. Wu, C. Y. Chow, and C. H. Yang. 1997b. Sporogonic development of the gregarine Ascogregarina taiwanensis in its natural host Aedes albopictus. J. Eukaryot. Microbiol. 44: 326-331.
Christopher, P., M. J. Bayer, S. Bühler, J. S. Andersen, M. Mann, and A. Mayer. 2001. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409: 581-588.
Clements, A. N. 1963. The Physiology of Mosquitoes. The Macmillan Company, New York. 393 pp.
Clements, A. N. 1990. The Biology of Mosquito. Vol. 1. Development, Nutrition and Reproduction. Chapman and Hall Press, London. 509 pp.
Clopton, R. E., and R. E. Glod. 1995. Effects of pH on excystation of Gregarina cuneata and Gregarina polymorpha. J. Eukaryot. Microbiol. 42: 540-544.
Clopton, R. E., and R. E. Glod. 1996. Host specificity of Gregarina blattarum von Siebold, 1839 (Apicomplexa: Eugregarinida) among five species of domiciliary cockroaches. J. Invertebr. Pathol. 67: 219-223.
Cociancich, S. O., S. S. Park, D. A. Fidock, and M. Shahabuddin. 1999. Vesicular ATPase overexpressing cells determine the distribution of malaria parasite oocysts on the midguts of mosquitoes. J. Biol. Chem. 274: 12650-12655.
Frevert, U. 1994. Malaria sporozoite-hepatocyte interactions. Exp. Parasitol. 79: 206-210.
Frevert, U., P. Sinnis, C. Cerami, W. Shreffler, B. Takacs, and V. Nussenzweig. 1993. Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. J. Exp. Med. 177: 1287-1298.
Garcia, G. E., R. A. Wirtz, J. R. Barr, A. Woolfitt, and R. Rosenberg. 1998. Xanthurenic acid induces gametogenesis in plasmodium, the malaria parasite. J. Biol. Chem. 273: 12003-12005.
Gill, S. S., P. B. Smethurst, P. Pietrantonio, and L. S. Ross. 1998. Isolation of the V-Atpase A and c subunit cDNAs from mosquito midgut and Malpighian tubules. Arch. Insect Biochem. Physiol. 37: 80-90.
Grabe, M., H. Wang, and G. Oster. 2001. The mechanochemistry of V-ATPase proton pumps. J. Biophys. 78: 2798-2813.
Van Hille, B., H. Richener, D. B. Evans, J. R. Green, and G. Bilbe. 1993. Identification of two subunit A isoforms of the vacuolar H+-ATPase in human osteoclastoma. J. Biol. Chem. 268: 7075-7080.
Harvey, W. R., and H. Wieczorek. 1997. Animal plasma membrane energization by chemiosmotic H+ V-ATPases. J. Exp. Biol. 200: 203-216.
Hayashi, M., H. Yamada, T. Mitamura, T. Horii, A. Yamamoto, and Y. Moriyama. 2000. Vacuolar H+-ATPase localized in plasma membranes of malaria parasite cells, Plasmodium falciparum, is involved in regional acidification of parasitized erythrocytes. J. Biol. Chem. 275: 34353-34358.
Huang, C. G. 1997. Effect of temperature and gregarines infection on distribution of Aedes albopictus and Aedes aegypti. Master Thesis, Tung Hai Univ. 49 pp. (in Chinese)
Huang, C. G., and C. S. Chen. 1997. Effect of gregarines infection on distribution of dengue vector. Proceedings of the Ninth Seminar on the Control of Vector and Pest: 33-44. (in Chinese)
Huss, M., G. Ingenhorst, S. Konig, M. Gabel, S. Drose, A. Zeeck, K. Altendor, and H. Wieczorek. 2002. Concanamycin A, the specific inhibitor of V-ATPases, binds to the V0 subunit c. J. Biol. Chem. 277: 40544-40548.
Jacques, P. A., and J. C. Beier. 1982. Experimental infections of Ascogregarina lanyuensis in Aedes sp. mosquitoes. Mosq. News 42: 438-439.
Kado, C. L., and S. T. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365-1373.
Kania, S. A., D. R. Allred, and A. F. Barbet. 1995. Babesia bigemina: host factors affecting the invasion of erythrocytes. Exp. Parasitol. 80: 76-84.
Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 17: 1244–1245.
Lehmann, T., S. M. Cupp, and W. E. Cupp. 1995. Chemical guidance of Onchocerca lienalis microfilariae to the thorax of Simulium vittatum. Parasitology 110: 329-337.
Levine, N. D. 1988. The Protozoan Phylum Apicomplexa. Chemical Rubber Company Press, Boca Raton, FL. 154 pp.
Lien, S. M. 1979. Lankesteria: the host relationships of three new species in Aedes mosquitoes. Master Thesis, Notre Dame Univ. 64 pp.
Lien, S. M., and N. D. Levine. 1980. Three new species of Ascocystis from mosquito. J. Protozool. 27: 147-151.
Lord, J. C., and D. W. Hall. 1983. Sporulation of Amblyspora in female Culex salinarius indution by 20-hydroxyecdysone. Parasitology 87: 161-166.
Lu, X., H. Yu, S. H. Liu, F. M. Brodsky, and B. M. Peterlin. 1998. Interactions between HIV1 Nef and vacuolar ATPase facilitate the internalization of CD4. Immunity 8: 647-656.
Mazzacano, C. A., J. C. Vargas, A. J. Mackay, and J. C. Beier. 1998. Plasmodium gallinaceum: effect of insect cells on ookinete development. Exp. Parasitol. 88: 210-216.
Mustermann, L. E., and N. D. Levine. 1983. Ascogregarina geniculati sp. n. from the mosquito Aedes geniculatus. J. Parasitol. 69: 769-772.
Nawa, N. 1997. Japanese encephalitis virus infection in Vero cells: the involvement of intracellular acidic vesicles in the early phase of viral infection was observed with the treatment of a specific vacuolar type H+ATPase inhibitor, bafilomycin A1. Microbiol. Immunol. 41: 537-543.
Nawa, N. 1998. Effects of bafilomycin A1 on Japanese encephalitis virus in C6/36 mosquito cells. Arch. Virol. 143: 1555-1568.
Nishi, T., and M. Forgac. 2002. The vacuolar (H+)-ATPases nature’s most versatile proton pumps. Nature Rev. 3: 94-103.
Olsen, O. W. 1974. Animal Parasites, Their Life Cycle and Ecology. 3rd ed. pp. 88-92. University Park Press, Baltimore.
Ostrovska, K. 1990. Ascogregarina saraviae n. sp. in Lutzomyia lichyi. J. Protozool. 37: 69-70.
Perry, S., L. Beyers, and D. A. Johnson. 2000. Cloning and molecular characterization of the trout (Oncorhynchus mykiss) vacuolar H+-ATPase B subunit. J. Exp. Biol. 203: 459-470.
Pillai, J. S., H. J. C. Neill, and P. F. Sone. 1976. Lankesteria culicis a gregarine parasite of Aedes polynesiensis in Western Samoa. Mosq. News 36: 150-154.
Purrini, K. 1980. Ascocystis brachyceri n. sp. parasitizing Megaselia subnitida Lendbeck. Arch. Protistenkd. 123: 192-201.
Ross, R. 1895. Some observations on the crescent-sphere flagella metamorphosis of the malaria parasite within the mosquito. Trans. South Ind. Br. Med. Assoc. 6: 334-350.
Rowton, E. D. 1987. Isolation of Ascogregarina sp. from Aedes hendersoni. J. Am. Mosq. Control Assoc. 3: 645-646.
Saliba, K. J., and K. Kirk. 1999. pH regulation in the intracellur malaria parasite, Plasmodium falciparum. J. Biol. Chem. 274: 33213-33219.
Sanders, R. D., and G. O. Poinar. 1973. Fine structure and life cycle of Lankesteria clarki sp. n. parasitic in the mosquito Aedes sierrensis. J. Protozool. 20: 594-602.
Shahabuddin, M., and P. F. P. Pimenta. 1998. Plasmodium gallinaceum preferentially invades vesicular ATPase-expressing cells in Aedes aegypti midgut. Proc. Natl. Acad. Sci., U.S.A. 95: 3385-3389.
Shortt, H. E., and C. S. Swaminah. 1927. Monocystis mackiei n. sp. parasitic in Phlebotomus argentipes Ann. and Brun. Ind. J. Med. Res. 15: 539-552.
Sim, B. K. L., C. E. Chitnis, K. Wasniowska, T. J. Hadley, and L. H. Miller. 1994. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264: 1941-1944.
Suwanabun, N., J. Sattabongkot, T. Tsuboi, M. Torii, N. Maneechai, N. Rachapaew, N. Yim-Amnuaychok, V. Punkitchar, and R. E. Coleman. 2001. Development of a method for the in vitro production of Plasmodium vivax ookinetes. J. Parasitol. 87: 928-930.
Thompson, T. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuclei Acids Res., 22: 4673–4680.
Vavra, J. 1969. Lankesteria barretti n. sp., a parasite of the mosquito Aedes triseriatus and a review of the genus Lankesteria Mingazzini. J. Protozool. 16: 546-570.
Walsh, R. D. Jr., and J. K. Olson. 1976. Observation on the susceptibility of certain mosquito species to infection by Lankesteria culicis. Mosq. News 36: 154-160.
Wang, T., T. Uezato, and N. Miura. 2001. Inhibition effect of Di(2-Ethylhexyl)phthalate on mouse-liver lysosomal vacular H+-ATPase. J. Cell Biochem. 81: 295-303.
Warburg, A., and I. Schneider. 1993. In vitro culture of the mosquito stages of Plasmodium falciparum. Exp. Parasitol. 76: 121-126.
Ward, R. A., N. D. Levine, and G. B. Craig. 1982. Ascogregarina nom. nov. for Ascocystis Grasse, 1953 (Apicomplexa, Eugregarinida). J. Parasitol. 68: 331.
Werner, H., and H. Hagenmaier. 1984. Bafilomycin, a new group of macrolide antibiotics production, isolation, chemical structure and biology activity. J. Antibiot. 37: 110-117.
Westbrook, A., and R. Russo. 1985. Ecdysone titers during the fourth larval instar of three species of Toxorhynchites. Proc. New Jersey Mosq. Control Assoc. 72: 63-70. (Cited in Clements, A. N. 1990).
Wieczorek, H., G. Gruber, W. R. Harvey, M. Huss, and H. Merzendorfer. 1999. The plasma membrane H+-V-ATPase from tobacco hornworm midgut. J. Bioenergetics Biomembranes 31: 67-74.
Wieczorek, H., G. Gruber, W. R. Harvey, M. Huss, H. Merzendorfer, and W. Zeiske. 2000. Structure and regulation of insect plasma membrane H+ V-ATPase. J. Exp. Biol. 203: 127-135.
Willis, J. H. 1974. Morphogenetic action of insect hormones. Ann. Rev. Entomol. 19: 97-115.
Wilson, J. M., D. J. Randall, M Donowitz, A. W. Vogl, and A. K. Ip. 2000. Immunolocalization of ion-transport proteins to branchial epithelium mitochondria-rich in the mudskipper (Periophthalmodon schlosseri). J. Exp. Biol. 203: 2297-2310.
Wu, W. K., and R. B. Tesh. 1989. Experimental infection of old and new world phlebotomine sand flies with Ascogregarina chagasi. J. Med. Entomol. 26: 237-242.
Yeh, M. L. 1992. Natural and experiment infection of Aedes albopictus and Armigeres subalbatus by Ascogregarina spp. Master Thesis, Tung Hai Univ. 84 pp. (in Chinese)
Yeh, M. L., C. S. Chen, and K. C. Liu. 1994. Experimental infection of mosquitoes with two Ascogregarina species. Bull. Tung Hai Univ. 35: 87-106. (in Chinese)
Zhuang, Z., P. J. Linser, and W. R. Harvey. 1999. Antibody to H+ V-ATPase subunit E colocalizes with portasomes in alkaline larval midgut of a freshwater mosquito (Aedes aegypti). J. Exp. Biol. 202: 2449-2460.
Zieler, H., J. P. Nawrocki, and M. Shahabuddin. 1999. Plasmodium gallinaceum Ookinetes adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand. J. Exp. Biol. 202: 485-495.
Zieler, H., and J. A. Dvorak. 2000. Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. Proc. Natl. Acad. Sci., U.S.A. 97: 11516-11521.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34825-
dc.description.abstract簇蟲(Gregarine)是蚊蟲體內常見的寄生性原生動物,在分類上屬於原生物界(Protista)、頂複合器門(Apicomplexa)、簇蟲綱(Gregarinea)、真簇蟲目(Eugregarinida)、衣孢蟲科(Lecudinidae)、囊簇蟲屬(Ascogregarina)。其生活史完全在昆蟲體內完成,並與宿主同步發育。以寄生於白線斑蚊(Aedes albopictus)的臺灣簇蟲(A. taiwanensis)為例:卵囊體(oocysts)被蚊幼蟲食入後,在腸道中會釋出孢子小體(sporozoite),並侵入中腸的上皮細胞,發育為細胞內營養體(trophozoite),隨後離開宿主細胞,並以上節(epimerite)附著於宿主的上皮細胞上,在宿主化蛹的第一天,大多數的營養體離開宿主中腸,遷移至馬氏管,發育成為配子體(gamete),當配子體配對後即發育成為配子囊體(gametocyst),而產生為數甚多檸檬狀的卵囊體。根據實驗結果顯示,簇蟲卵囊體在pH 11的鹼性環境下才會釋出孢子體,而蚊子中腸pH值主要受腸道細胞的V-ATPase調控。V-ATPase是屬於耗ATP的質子幫浦,通常出現在真核細胞的內膜上,形成酸性的組織如溶小體、胞小體及parasitophorous vacuoles等,甚至一些具有套膜的病毒在感染細胞時需依賴V-ATPase所形成的酸化環境。但在蚊子腸道中,V-ATPase則扮演著使腸道形成鹼性環境的角色。在本研究中,將探討V-ATPase對簇蟲感染的影響,同時,偵測V-ATPase在宿主表現位置的差異,實驗中利用部份的白線斑蚊V-ATPase subunit A之序列,選殖出完整的V-ATPase subunit A基因並以大腸桿菌表現系統表現V-ATPase subunit A蛋白質,此完整的V-ATPase subunit A序列共有2791個核酸,具有一完整的ORF (open reading frame),長度為1842個核酸,此ORF在pET30a載體上表現出來的蛋白質為74 kDa,利用此蛋白質去生產抗V-ATPase subunit A的血清,並利用此血清去檢測V-ATPase在腸道的表現,發現中腸前後段的V-ATPase表現位置不同,而切片的結果顯示簇蟲只寄生於中腸後段的細胞。另一方面,用酸性囊泡染劑Acridine orange染色,發現被簇蟲寄生的腸道中,簇蟲會在胞內形成酸性的囊泡。綜合上述結果發現V-ATPase可能影響簇蟲的寄生,於是用V-ATPase的專一性抑制劑bafilomycin A1抑制蚊幼蟲的V-ATPase功能,發現可顯著抑制簇蟲的寄生。此結果代表簇蟲的寄生需依賴宿主功能的正常的V-ATPase。zh_TW
dc.description.abstractGregarines (Apicomplexa, Eugregarinida, Lecudinidae) are common parasites of mosquitoes. The life cycle of Ascogregarina is completed in the insect with its development synchronized with the host. The mosquito Aedes albopictus acquires the A. taiwanensis from the ingestion of its oocysts in the breeding water. Within the digestive tract, the sporozoites emerge from the oocysts and enter the epithelial cells. After a short duration of intracellular development, the trophozoite attaches to the luminal side of the midgut cell by the epimerite. During the mosquito pupation, the gregarine migrates into the Malpighian tubules to begin the gametogenous phase. The gregarine sporozoites are released by ingested oocysts in the high pH environment. In mosquito larvae, V-ATPase plays an important role in regulating luminal alkalization of midgut. The V-ATPase is a family of ATP-dependent proton pumps and usually located on the endomembrane of eukaryotic cells. Acidification of intracellular compartments such as lysosomes, endosomes, and parasitophorous vacuoles medicated by V-ATPase are essential for the entry of many enveloped viruses and invasion into or escape from host cells. We had cloned and expressed the full-length V-ATPase subunit A protein from mRNAs extracted from Ae. albopictus larval tissues. This open reading frame (ORF) and 3’ uncoding sequences were 2971 base pairs in length. The rabbit anti V-ATPase subunit A antiserum was prepared and was used to detect V-ATPase in the midgut of mosquito larvae. Antibody-binding sites were observed to be located at the basal of anterior midgut and the apical of posterior midgut. Longitudinal section of infected larva showed gregarine located in the posterior midgut. In response to the invasion of A taiwanensis, a parasitophorous vacuole confining intracellular trophozoites was formed; within which acidification was demonstrated by using acridine orange staining. Mosquito treated with bafilomycin A1, a specific inhibitors of V-ATPase, showed a dramatic reduction in intensity of infection by gregarina. Therefore, V-ATPase may play a crucial role in determining the infection of gregarine.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:35:12Z (GMT). No. of bitstreams: 1
ntu-94-D88632002-1.pdf: 4950995 bytes, checksum: 17fb09a617b2b237a8fa98e626ca429d (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要………………………………………………………………… i
英文摘要………………………………………………………………iii
目錄………………………………………………………………………v
表次……………………………………………………………………ix
圖次………………………………………………………………………x
壹、緒言………………………………………………………………1
貳、往昔研究……………………………………………………………3
一、簇蟲簡介………………………………………………………4
二、簇蟲生活史.................................................................................4
三、簇蟲的宿主專一性......................................................................4
四、蛻皮激素對簇蟲發育的影響......................................................6
五、其他寄生蟲研究..........................................................................7
(一)瘧原蟲.....................................................................................7
(二)巴貝斯蟲.................................................................................8
(三)蟠尾絲蟲.................................................................................9
六、V-ATPase簡介...........................................................................9
七、蚊子的V-ATPase.......................................................................10
八、病毒與V-ATPase的關係……………………………………………11
九、寄生蟲與V-ATPase的關係.......................................................12
參、材料與方法......................................................................................14
一、實驗室蟲原................................................................................14
(一)蚊種.......................................................................................14
(二)簇蟲來源...............................................................................14
二、蚊蟲飼養法................................................................................14
三、卵囊體純化................................................................................14
四、蚊感染強度測試........................................................................15
五、卵囊體不同pH值處理後梯度離心回收率實驗......................15
六、卵囊體掃瞄式電子顯微鏡樣本處理........................................15
七、冷凍切片....................................................................................16
八、核醣核酸萃取............................................................................16
九、反轉錄反應................................................................................17
十、聚合酶鏈反應............................................................................17
十一、限制酶切................................................................................17
十二、接合作用................................................................................18
十三、轉型作用................................................................................18
十四、快速篩選................................................................................18
十五、利用聚合酶鏈反應確認菌落...............................................18
十六、蛋白質表現及表現時間測試................................................19
十七、表現的蛋白質可溶性測試....................................................19
十八、蛋白質大量表現、純化及濃縮.........................................20
十九、抗血清製備............................................................................21
二十、斑蚊腸道細胞全蛋白抽取及純化........................................21
二十一、SDS-PAGE...................................................................21
二十二、ECL西方墨漬法...............................................................22
二十三、免疫組織化學....................................................................23
二十四、V-ATPase抑制劑bafilomycin A1處理對簇蟲感染強度之影響......................................................................................23
二十五、Acridine Orange 染色......................................................23
二十六、親緣關係分析方法……………………………………………23
肆、結果.......................................................................………………...25
一、卵囊體純化...............................................................................25
二、蚊感染強度測試........................................................................25
三、卵囊體不同pH值處理後梯度離心回收率實驗......................25
四、高pH值處理對卵囊體的影響..................................................26
五、冷凍切片...................................................................................26
六、V-ATPase subunit A之cDNA序列..........................................26
七、V-ATPase subunit A表現及純化...............................................28
八、抗V-ATPase subunit A血清效價及偵測白線斑蚊腸道中的V-ATPase subunit A...................................................................28
九、V-ATPase subunit A在腸道的分佈.......................................29
十、V-ATPase抑制劑bafilomycin A1處理對簇蟲感染強度之影響.........................................................................................29
十一、感染簇蟲的白線斑蚊腸道以Acridine orange染色之結果................................................................................................29
伍、討論...................................................................................................31
陸、引用文獻............................................................................................37
柒、誌謝………………………………………………………………………46
表............................................................................................................47
圖............................................................................................................49
dc.language.isozh-TW
dc.title探討白線斑蚊腸道H+ V-ATPase的表現與簇蟲感染的關係zh_TW
dc.titleINTESTINAL EXPRESSION OF H+ V-ATPase IN THE MOSQUITO AEDES ALBOPICTUS IS TIGHTLY ASSOCIATED WITH GREGARINE INFECTIONen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree博士
dc.contributor.advisor-orcid,吳文哲(wuwj@ntu.edu.tw)
dc.contributor.oralexamcommittee王重雄(Chung-Hsiung Wang),陳錦生(Chin-Seng Chen),師健民(Chien-Ming Shih),卓文隆(Wen-Long Cho)
dc.subject.keyword白線斑蚊,臺灣簇蟲,V-ATPase,zh_TW
dc.subject.keywordAedes albopictus,Ascogregarina taiwanensis,V-ATPase,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2006-01-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
4.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved