請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34752完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于天立 | |
| dc.contributor.author | Jui-Ting Lee | en |
| dc.contributor.author | 李瑞庭 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:34:16Z | - |
| dc.date.available | 2011-07-28 | |
| dc.date.copyright | 2011-07-28 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-25 | |
| dc.identifier.citation | [1] R. Etxeberria and P. Larra˜naga. Global optimization using bayesian networks.
Proceedings of the Second Symposium on Artificial Intelligence Adaptive Sys- tems, pages 332–339, 1999. [2] D. E. Goldberg. Simple genetic algorithms and the minimal, deceptive problem. Genetic Algorithms and Simulated Annealing, pages 74–88, 1987. [3] D. E. Goldberg. Genetic algorithms in search, optimization and machine learn- ing. Addison-Wesley, 1989. [4] D. E. Goldberg. The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA, USA, 2002. [5] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: motivation, analysis, and first results. Complex Systems, vol. 3:pp. 493–530, 1989. [6] D. E. Goldberg, K. Sastry, and T. Latoza. On the supply of building blocks. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 336–342. Morgan Kaufmann, 2001. [7] G. R. Harik. Finding multiple solutions in problems of bounded difficulty. Technical Report IlliGAL Report No. 94002, University of Illinois at Urbana- Champaign, Urbana, IL, January 1994. [8] G. R. Harik. Learning linkage. Foundations of Genetic Algorithms 4, pages 247–262, 1996. 41[9] G. R. Harik. Linkage learning via probabilistic modeling in the ecga. Technical Report IlliGAL Report No. 99010, University of Illinois at Urbana-Champaign, Urbana, IL, February 1999. [10] J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, 1975. [11] M. Hutter and M. Zaffalon. Distribution of mutual information from complete and incomplete data. Computational Statistics & Data Analysis, 48(3):633–657, 2005. to appear. [12] G. D. Kleiter. The posterior probability of bayes nets with strong dependences. Soft Computing, 3:162–173, 1999. [13] P. Larra˜naga and J. A. Lozano, editors. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, 2002. [14] B. L. Miller and D. E. Goldberg. Genetic algorithms, tournament selection, and the effects of noise. Complex Systems, 9:193–212, 1995. [15] H. M¨uhlenbein and G. Paass. From recombination of genes to the estimation of distributions i. binary parameters. In Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, PPSN IV, pages 178–187, London, UK, 1996. Springer-Verlag. [16] M. Munetomo. Linkage identification based on epistasis measures to realize efficient genetic algorithms. In Proceedings of the Evolutionary Computation on 2002. CEC ’02. Proceedings of the 2002 Congress - Volume 02, CEC ’02, pages 1332–1337, Washington, DC, USA, 2002. IEEE Computer Society. [17] M. Munetomo and D. E. Goldberg. Identifying linkage by nonlinearity check. Technical Report IlliGAL Report No. 98012, University of Illinois at Urbana- Champaign, Urbana, IL, February 1998. 42[18] M. Pelikan. Bayesian optimization algorithm: from single level to hierarchy. Doctoral dissertation,, University of Illinois at Urbana-Champaign, Champaign, IL, 2002. [19] M. Pelikan and D. E. Goldberg. Hierarchical bayesian optimization algorithm = bayesian optimization algorithm + niching + local structures. pages 525–532. Morgan Kaufmann, 2001. [20] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz. BOA: The bayesian opti- mization algorithm. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999), pages 525–532, 1999. [21] G. C. Rota. The Number of Partitions of a Set. The American Mathematical Monthly, 71(5):498–504, 1964. [22] C. E. Shannon. A mathematical theory of communication. Bell system technical journal, 27, 1948. [23] M. Tsuji, M. Munetomo, and K. Akama. Modeling dependencies of loci with string classification according to fitness differences. Proceedings of the Ge- netic and Evolutionary Computation Conference (GECCO-2004), pages 246– 257, 2004. [24] M. Tsuji, M. Munetomo, and K. Akama. A crossover for complex building blocks overlapping. In Proceedings of the 8th annual conference on Genetic and evolutionary computation, GECCO ’06, pages 1337–1344, New York, NY, USA, 2006. ACM. [25] R. Watson and J. B. Pollack. Hierarchically consistent test problems for genetic algorithms. 1999. [26] T.-L. Yu, D. E. Goldberg, K. Sastry, C. F. Lima, and M. Pelikan. Dependency structure matrix, genetic algorithms ,and effective recombination. Evolutionary Computation, vol. 17, no. 4, pp. 595–626, 2009. 43[27] T.-L. Yu, K. Sastry, and D. E. Goldberg. Linkage learning, overlapping building blocks, and systematic strategy for scalable recombination. In Proceedings of the 2005 conference on Genetic and evolutionary computation, GECCO ’05, pages 1217–1224, New York, NY, USA, 2005. ACM. [28] T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan. Population sizing for entropy-based model building in discrete estimation of distribution algorithms. In Proceedings of the 9th annual conference on Genetic and evolutionary com- putation, GECCO ’07, pages 601–608, New York, NY, USA, 2007. ACM. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34752 | - |
| dc.description.abstract | 現有的估計分布演算法從變數的對偶相互作用中學習相依性,並藉此建構模型。模型中用來描述變數的關係之特徵函數是為二元函數。 意即,此特徵函數描述了變數之間存在相互作用與否。 然而實驗中可能會發生變數間並非是絕對的有相互作用或無。 本論文提出使用實數特徵函數來描述這樣的模糊性。 在測試問題上,我們檢視了所有可能的二元模型以及實數模型,發現到估計分布演算法使用最佳的實數模型,在效率上會勝過使用最佳的二元模型。 本論文也提出了兩個可以利用實數模型資訊的基因重組演算法,實驗結果說明使用提出的演算法可以減少四分之三的函數估算次數。 此外,本論文也提出了有效找到基於平均信息量之交互作用偵測度量的臨界點的方法以及產生實數模型的方法。 實驗中得知我們提出的基因重組演算法使用了產生的實數模型可以良好運作。 | zh_TW |
| dc.description.abstract | Existing estimation of distribution algorithms (EDAs) learn linkages starting from pairwise interactions of variables and construct models from the linkages. The characteristic function of models which indicates the relations among variables are binary. In other words, the characteristic function indicates that there exist or not interactions among variables. Empirically, it can occur that two variables should be sometimes related but sometimes not. This thesis introduces a real-valued characteristic function to illustrate this property of fuzziness. We examine all the possible binary models and real-valued models on test problems. The results show that EDAs using optimal real-valued models outperforms the one using optimal binary models. This thesis also proposes two recombination algorithms which are able to utilize the information provided by real-valued models. Experiments show that the proposed pairwise crossover could reduce function evaluations by three quarters. Moreover, this thesis proposes an effective method to find a threshold for entropy based linkage-learning metric and a method to generate real-valued models. Experiments show that the proposed crossover with generated real-valued models works well. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:34:16Z (GMT). No. of bitstreams: 1 ntu-100-R98921050-1.pdf: 1645839 bytes, checksum: 12de43f479812cfb97174ae30fbd7e13 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Acknowledgement i
摘要 ii Abstract iii Contents iv List of Figures vi List of Tables viii List of Abbreviations ix List of Symbols x 1 Introduction 1 2 Background of Genetic Algorithm and Estimation of Distribution Algorithm 4 2.1 Simple Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Estimation of Distribution Algorithm . . . . . . . . . . . . . . . . . . 8 2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Real-valued Characteristic Function 10 3.1 Real-valued Characteristic function . . . . . . . . . . . . . . . . . . . 11 3.2 The Benefits of Real-valued Models . . . . . . . . . . . . . . . . . . . 14 iv3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Crossover for Real-valued Models 18 4.1 A Crossover for Real-valued Models . . . . . . . . . . . . . . . . . . . 18 4.2 Recombination From Pairwise to Population-wise . . . . . . . . . . . 23 4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4 Comparisons between Two Proposed Crossover Algorithms . . . . . . 30 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 Interaction Detection 33 5.1 For Binary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 For Real-valued Models . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6 Conclusions 40 Bibliography 41 | |
| dc.language.iso | en | |
| dc.subject | 鏈結辨識 | zh_TW |
| dc.subject | 基因遺傳演算法 | zh_TW |
| dc.subject | 建構模塊 | zh_TW |
| dc.subject | 模型建立 | zh_TW |
| dc.subject | Building Block | en |
| dc.subject | Model Building | en |
| dc.subject | Linkage Learning | en |
| dc.subject | Estimation of Distribution Algorithm | en |
| dc.title | 利用實數模型增進分布估計演算法之效能 | zh_TW |
| dc.title | Improving EDAs’ Performance by Using Real-valued Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張時中,陳穎平 | |
| dc.subject.keyword | 基因遺傳演算法,鏈結辨識,建構模塊,模型建立, | zh_TW |
| dc.subject.keyword | Estimation of Distribution Algorithm,Linkage Learning,Building Block,Model Building, | en |
| dc.relation.page | 44 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
