請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34641完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
| dc.contributor.author | Li-Wei Kuo | en |
| dc.contributor.author | 郭力維 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:19:55Z | - |
| dc.date.available | 2008-02-27 | |
| dc.date.copyright | 2007-02-27 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-01-25 | |
| dc.identifier.citation | 參考文獻
[1] G. A. Prinz, Science 282, 1660 (1998) [2] D. J. Monsma , J. C. Lodder, Th. J. Popma and B. Dieny Phys. Rev. Lett. 74 , 5260 (1995) [3] T. R. McGuire and R. I. Potter, IEEE trans. Magn. 11, 1018(1975) [4] B. D. Cullity, “Introduction To Magnetic Materials “ (Addison-Wesley,Massachusetts, 1972) [5] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993) [6] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988) [7] B. Heinrich and J. A. C. Bland(Eds.), Ultrathin Magnetic Structure II (1994) [8] P. M. Tedrow, R. Meservey, Phys. Rev. Lett. 26, 191(1971) [9] P. M. Tedrow, R. Meservey, Phys. Rev. B , 7, 318 (1973) [10] D.Paraskevopoulos, R. Meservey, P. M. Tedrow, Phys. Rev. B, 16, 4907 (1977) [11] M.Julliere, Phys. Lett. 54A, 255 (1975) [12] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995) [13] H. K. Onnes, Leiten Comm. 120b, 122b, 124c, (1911) [14] http://hyperphysics.phy-astr.gsu.edu/hbase/solids/supcon.html#c1 [15] W. Meissner and R. Ochsenfeld, Naturwiss 21, 787 (1933) [16] F. London and H. London, Proc. Poy. Soc. (London) A155, 71 (1935) [17] C. L. Chien, Daniel H. Reich, J. Magn. Magn. Mater. 200, 83 (1999) [18] J. L. Chien, J. S. Jiang, John Q. Xiao, D. Davidovic, Daniel H. Reich, J. Appl. Phys, 81, 5358 (1997) [19] I. A. Garifullin, J. Magn. Magn. Mater. 240, 571 (2002) [20] Th. Mühge, N. N. Garif'yanov, Yu. V. Goryunov, K. Theis-Bröhl, K. Westerholt, I. A. Garifullin, H.Zabel, Physica C,296 325(1998) [21] Th. Mühge, I. Zoller, K. Westerholt, H. Zabel, N. N. Garifyanov, Yu. V. Goryunov, I. A. Garifullin, G. G. Khaliullin, L. R. Tagirov, J. Appl. Phys, 81, 4755 (1997) [22] S. V. Dubonos, A. K. Geim, K. S. Novoselov, I. V.Grigorieva Phys. Rev. B , 65 , 220513 (2002) [23] B. W. Maxfield and W. L. McLean , Phys Rev 139 , 5A , A1515 (1965) [24] H. Walter, W. Prusseit, R. Semerad, H. Kinder, W. Assmann, H. Huber, H. Burkhardt, D. Raineand J. A. Sauls, Phys. Rev. Lett. , 80, 3598 (1998) [25] L. Alff, S. Meyer, S. Keefisch, U. Schoop, A. Marx, H. Sato, M. Naito, and R. Gross, Phys. Rev. Lett., 83, 2644 (1999) [26] J. Halbritter , JAP , 46 , 3 (1975) [27] C.J. Gorter and HBG Casimir, Physica 1, 306 (1934). [28] http://nobelprize.org/physics/laureates/1973/index.html [29] http://nobelprize.org/physics/laureates/1986/index.html | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34641 | - |
| dc.description.abstract | 摘要
磁性穿隧接面由鐵磁/絕緣/鐵磁所構成,穿隧磁電阻效應的高低主要取決於「鐵磁/絕緣」介面上的磁性和電子組態。藉由引入超導層,在鐵磁/超導鄰近效應中,我們來觀察鐵磁層中電子傳輸是否受到超導層影響。經由對照組我們發現在低溫進入超導態時,反平行態電阻受到超導層鈮的影響隨著溫度降低而降低,而平行態電阻則不受超導影響,其現象就是磁電阻率的降低。 在不同厚度的鈮,我們發現鈮厚度在低於100 nm時,磁電阻率在超導態時明顯不受影響。比較鈮厚度500 nm,鈮厚度在150 nm ~250 nm時,磁電阻率在溫度降低至超導轉變溫度時會有延遲降低的現象。 | zh_TW |
| dc.description.abstract | Abstract
The magnetic tunnel junctions (MTJs) are consisted of ferromagnet/insulator/ferromagnet (FM/I/FM). Tunnel magnetoresistance (TMR) is strongly influenced by the electronic and magnetic properties at the FM/I interface. Considering the proximity effect in ferromagnet/superconductor (FM/SC), we sputtered Nb on the top FM layer of pseudo spin-valve (PSV) magnetic tunnel junctions to observe how the superconducting Nb influences the FM layer. With the help of the contrast experiment, we find that the resistance of the antiparallel state maybe influenced by Nb and it becomes lower below the superconducting transition temperature (Tc). However, the resistance in paralleled state is not significantly influenced by Nb, resulting in the decrease of TMR values. In the thickness dependence of Nb, we find that TMR is not apparently influenced in SC state as the thickness of Nb is below 100 nm. Comparing with that in the case of 500 nm Nb thickness, the TMR value shows retarding decrease as cooling through Tc for those of Nb thickness between 150 nm and 250 nm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:19:55Z (GMT). No. of bitstreams: 1 ntu-95-R92222050-1.pdf: 1899679 bytes, checksum: beb58e84a1b8df3305164363db9f5486 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目 錄
第一章 簡介 1 第二章 基本原理 3 2.1 磁電阻 3 2.1.1普通磁電阻 4 2.1.2異向性磁電阻 4 2.1.3龐磁阻 5 2.1.4巨磁阻 5 2.1.5穿隧磁電阻 7 2.2 超導體 11 2.2.1零電阻和邁斯納效應 11 2.2.2倫敦方程和超導穿透深度 13 2.2.3鄰近效應 16 2.3.2磁性與超導的相互影響 17 第三章 實驗技術 18 3.1 超高真空系統 18 3.1.1抽氣系統 18 3.1.2真空壓力計 21 3.2 濺鍍系統 23 3.2.1直流和交流濺鍍 23 3.2.2磁控濺鍍 25 3.3元件製程 26 3.4四點量測法 28 第四章 實驗結果與分析 29 4.1 NiFe/CoFe/Al2O3/CoFe/Nb(500nm) 31 4.2 Superconducting thickness dependence 44 4.3超導穿透深度和磁電阻率的關係 61 第五章 結論 63 第六章 參考資料 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 穿隧磁電阻 | zh_TW |
| dc.subject | 超導穿透深度 | zh_TW |
| dc.subject | Tunnel magnetoresistance | en |
| dc.subject | penetration depth | en |
| dc.title | 鎳鐵/鈷鐵/氧化鋁/鈷鐵/鈮
鄰近效應影響下的穿隧磁電阻率 | zh_TW |
| dc.title | Tunnel Magnetoresistance Under Proximity Effect
in NiFe/CoFe/Al2O3/CoFe/Nb | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高英哲(Ying-Jer Kao),江文中(Wen-C Chiang),林俊源(Jiunn-Yuan Lin) | |
| dc.subject.keyword | 穿隧磁電阻,超導穿透深度, | zh_TW |
| dc.subject.keyword | Tunnel magnetoresistance,penetration depth, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-01-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
