Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34558
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐濟泰(Jih-Tay Hsu)
dc.contributor.authorWei-Chien Hsuen
dc.contributor.author徐維謙zh_TW
dc.date.accessioned2021-06-13T06:15:06Z-
dc.date.available2006-02-08
dc.date.copyright2006-02-08
dc.date.issued2006
dc.date.submitted2006-02-05
dc.identifier.citation沈明來。1999。試驗設計學。第二版。九洲圖書文物有限公司。台北。
龐飛與傅文村,1993年,豬白血球中介質II的產生和測定,中華獸醫誌19,pp. 58-65。
Abe, F., N. Ishibashi and S. Shimamura. 1995. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78:2838-2846.
Alexopoulos, C., A. Karagiannidis, S. K. Kritas, C. Boscos, I. E. Georgoulakis and S. C. Kyriakis. 2001. Field evaluation of a bioregulator containing live Bacillus cereus spores on health status and performance of sows and their litters. J. Vet. Med. A. 48:137-145.
Alexopoulos, C., I. E. Georgoulakis, A. Tzivara, S. K. Kritas, A. Siochu and S. C. Kyriakis. 2004. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J. Anim. Physiol. Anim. Nutr. 88:381-392.
Allen, W. D. and P. Porter. 1973. The relative distribution of IgM and IgA cells in intestinal mucosa and lymphoid tissues of the young unweaned pig and their significance in ontogenesis of secretory immunity. Immunology. 24:493-501.
AOAC. 1990. Official Method of Analysis. 15th ed. Associations of Official Analytical Chemists, Arlington, Virginia. USA.
Auclair, E. 2001. Yeast as an example of the mode of action of probiotics in monogastric and ruminant species. In. Brufau J. Feed manufacturing in the mediterranean region. Improving safety: from feed to food. Zaragoza: Cijeam-Iamz. p45-53.
Blomberg, L., A. Henriksson and P. L. Conway. 1993. Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp. Appl. Environ. Microbiol. 59:34-39.
Bourne, F. J. 1976. Humoral immunity in the pig. Vet. Rec. 98:499-501.
Casey, P. G., G. D. Casey, G. E. Gardiner, M. Tangney, C. Stanton, R. P. Ross, C. Hill and G. F. Fitzgerald. 2004. Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract. Lett. Appl. Microbiol. 39:431-438.
Curtis, J. and F. J. Bourne. 1973. Half-lives of immunoglobulins IgG, IgA and IgM in the serum of newborn pigs. Immunology. 24:147-155.
Davis, M. E., C. V. Maxwell, D. C. Brown, B. Z. de Rodas, Z. B. Johnson, E. B. Kegley, D. H. Hellwig and R. A. Dvorak. 2002. Effect of dietary mannan oligosaccharides and(or) pharmacological additions of copper sulfate on growth performance and immunocompetence of weanling and growing/finishing pigs. J. Anim. Sci. 80:2887-2894.
Davis, M. E., C. V. Maxwell, G. F. Erf, D. C. Brown and T. J. Wistuba. 2004a. Dietary supplementation with phosphorylated mannans improves growth response and modulates immune function of weanling pigs. J. Anim. Sci. 81:1882-1891.
Davis, M. E., D. C. Brown, C. V. Maxwell, Z. B. Johnson, E. B. Kegley and R. A. Dvorak. 2004b. Effect of phosphorylated mannans and pharmacological additions of zinc oxide on growth and immunocompetence of weanling pigs. J. Anim. Sci. 82:581-587.
Demeckova, V., D. Kelly, A. G. P. Coutts, P. H. Brooks and A. Campbell. 2002. The effect of fermented liquid feeding on the faecal microbiology and colostrum quality of farrowing sows. Int. J. Food Microbiol. 79:85-97.
Dunshea, F. R., D. J. Kerton, P. J. Eason and R. H. King. 2000. Supplemental fermented milk increases growth performance of early-weaned pigs. Asian-Aus. J. Anim. Sci. 13:511-515.
Fooks, L. J. and G. R. Gibson. 2002. Probiotics as modulators of the gut flora. Br. J. Nutr. 88 (suppl.):S39-S49.
Forestier, C., C. D. Champs, C. Vatoux and B. Joly. 2001. Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol. 152:167-173.
Fukushima, Y., Y. Kawata, K. Mizumachi, J. Kurisaki and T. Mitsuoka. 1999. Effect of bifidobacteria feeding on fecal flora and production of immunoglobulins in lactating mouse. Int. J. Food Microbiol. 46:193-197.
Galdeano, C. M. and G. Perdigon. 2004. Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation. J. Appl. Microbiol. 97:673-681.
Gardiner, G. E., P. G. Casey, G. Casey, P. B. Lynch, P. G. Lawlor, C. Hall, G. F. Fitzgerald, C. Stanton and R. P. Ross. 2004. Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract. Appl. Environ. Microbiol. 70:1895-1906.
Gill, H. S. 1998. Stimulation of immune system by lactic cultures. Int. Dairy J. 8:535-544.
Gill, H. S., K. J. Rutherfurd, J. Prasad and P. K. Gopal. 2000. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br. J. Nutr. 83:167-176.
Gilliland, S. E., M. L. Speck and C. G. Morgan. 1975. Detection of Lactobacillus acidophilus in feces of humans, pigs, and chickens. Appl. Microbiol. 30:541-545.
Gluck, U. and J. O. Gebber. 2003. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and β-hemolytic streptococci). Am. J. Clin. Nutr. 77:517-520.
Hale, O. M. and G. L. Newton. 1979. Effects of a nonviable Lactobacillus species fermentation product on performance of pig. J. Anim. Sci. 48:770-775.
Hankins, C. C., P. R. Noland, A. W. Burks, J. C. Connaughton, G. Cockrell and C. L. Metz. 1992. Effect of soy protein ingestion on total and specific immunoglobulin G concentrations in neonatal porcine serum measured by enzyme-linked immunosorbent assay. J. Anim. Sci. 70:3096-3101.

Herich, R. and M. Levkut. 2002. Lactic acid bacteria, probiotics and immune system. Vet. Med. 47:169-180.
Herich, R., V. Revajova, M. Levkut, A. Bomba, R. Nemcova, P. Guba and S. Gancarcikova. 2002. The effect of Lactobacillus paracasei and raftilose P95 upon the non-specific immune response of piglets. Food Agric. Immunol. 14:171-179.
Hiss, B. S. and H. Sauerwein. 2003. Influence of dietary β-glucan on growth performance, lymphocyte proliferation, specific immune response and haptoglobin plasma concentrations in pigs. J. Anim. Physiol. Anim. Nutr. 87:2-11.
Hudault, S., V. Lievin, M. F. B. Camard and A. L. Servin. 1997. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl. Environ. Microbiol. 63:513-518.
Inoue, R., T. Tsukahara, N. Nakanishi and K. Ushida. 2005. Development of the intestinal microbiota in the piglet. J. Gen. Appl. Microbiol. 51:257-265.
Isolauri, E., Y. Sutas, P. Kankaanpdd, H. Arvilommi and S. Salminen. 2001. Probiotics: effects on immunity. Am. J. Clin. Nutr. 73(suppl.):444S-450S.
Jin, L. Z., R. R. Marquardt and X. Zhao. 2000. A strain of Enterococcus faecium (18C23) inhibits adhesion of enterotoxigenic Escherichia coli K88 to porcine small intestine mucus. Appl. Environ. Microbiol. 66:4200-4204.
Jung, K., Y. Ha, S. K. Ha, D. U. Han, D. W. Kim, W. K. Moon and C. Chae. 2004. Antiviral effect of Saccharomyces cerevisiae β-glucan to swine influenza virus by increased production of interferon-γ and nitric oxide. J. Vet. Med. 51:72-76.
Jurgens, M. H., R. A. Rikabi and D. R. Zimmerman. 1997. The effect of dietary active dry yeast supplement on performance of sows during gestation-lactation and their pig. J. Anim. Sci. 75:593-597.
Kabir, A. M. A., Y. Aiba, A. Takagi, S. Kamiya, T. Miwa and Y. Koga. 1997. Prevention of Helicobacter pylori infection by lactobacilli in a gnotobiotic murine model. Gut 41:49-55.
Kailasapathy, K. and J. Chin. 2000. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Cell Biol. 78:80-88.
Klobasa, F., E. Werhahn and J. E. Butler. 1987. Composition of sow milk during lactation. J. Anim. Sci. 64:1458-1466.
Klobasa, F., J. E. Butler, E. Werhann and F. Habe. 1986. Maternal-neonatal immuno-regulation swine. II. Influence of multiparity on de novo immunoglobulin synthesis by piglets. Vet. Immunol. Immunopathol. 11:149-159.

Koh, J. H., K. W. Yu and S. J. Suh. 2002. Biological activities of Saccharomyces cerevisiae and fermented rice bran as feed additives. Lett. Appl. Microbiol. 35:47-51.
Kuller, W. I., N. M. Soede, H. M. G. van Beers-Schreurs, P. Langendijk, M. A. M. Taverne, J. H. M. Verheijden and B. Kemp. 2004. Intermittent suckling: effects on piglet and sow performance before and after weaning. J. Anim. Sci. 82:405-413
Kyriakis, S. C., V. K. Tsiloyiannis, J. Vlemmas, K. Sarris, A. C. Tsinas, C. Alexopoulos and L. Jansegers. 1999. The effect of probiotic LSP 122 on the control of post-weaning diarrhea syndrome of piglets. Res. Vet. Sci. 67:223-228.
Lawrence, A. B., J. C. Petherick, K. A. McLean, L. A. Deans, J. Chirnside, A. Vaughan, E. Clutton and E. M. C. Terlouw. 1994. The effect of environment on behaviour, plasma cortisol and prolactin in parturient sows. Appl. Anim. Behav. Sci. 39:313-330.
Lee, J. N., D. Y. Lee, I. H. Ji, G. E. Kim, H. N. Kim, J. Sohn, S. Kim and C. W. Kim. 2001. Purification of soluble β-glucan with immune enhancing activity from the cell wall of yeast. Biosci. Biotechnol. Biochem. 65:837-841.
Lee, J. W., J. G. Shin, E. H. Kim, H. E. Kang, I. B. Yim, J. Y. Kim, H. G. Joo and H. J. Woo. 2004. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J. Vet. Sci. 5:41-48.
Lemieux, F. M., L. L. Southern and T. D. Bidner. 2003. Effect of mannan oligosaccharides on growth performance of weanling pigs. J. Anim. Sci. 81:2482-2487.
Lessard, M. and G. J. Brisson. 1987. Effect of a Lactobacillus fermentation product on growth, immune response and fecal enzyme activity in weaned pigs. Can. J. Anim. Sci. 67:509-516.
Ma, L., E. Deitch, R. Specian, E. Steffen and R. Berg. 1990. Translocation of Lactobacillus murinus from the gastrointestinal tract. Curr. Microbiol. 20:177-184.
Maassen, C. B. M., W. J. A. Boersma, C. van Holten-Neelen, E. Claassen and J. D. Laman. 2003. Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: implications for vaccine development. Vaccine 21:2751-2757.
Machado-Neto, R., C. N. Graves and S. E. Curtis. 1987. Immunoglobulins in piglets from sows heat-stressed prepartum. J. Anim. Sci. 65: 445-455.
Mack, D. R., S. Michail, S. Wei, L. Mcdougall and M. A. Hollingsworth. 1999. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. 276:G941-G950.
Mathew, A. G., S. E. Chattin, C. M. Robbins and D. A. Golden. 1998. Effects of a direct-fed yeast culture on enteric microbial populations, fermentation acids, and performance of weanling pigs. J. Anim. Sci. 76:2138-2145.

Matsuzaki, T. 1998. Immunomodulation by treatment with Lactobacillus casei strain Shirota. Int. J. Food Microbiol. 41:133-140.
Matsuzaki, T. and J. Chin. 2000. Modulating immune responses with probiotic bacteria. Immunol. Cell Biol. 78:67-73.
McGlone, J. and W. Pond. 2003. Pig Production: Biological Principles and Applications. Delmar Learning, Clifton Park, NY.
Medel, P., C. Pineiro, A. Kocher, F. Baucells and M. I. Gracia. 2004. The effect of mannan oligosaccharides on reproductive performance in sows. J. Anim. Sci. 82(suppl. 1):332. (Abstr.)
Medici, M., C. G. Vinderola, R. Weill and G. Perdigon. 2005. Effect of fermented milk containing probiotic bacteria in the prevention of an enteroinvasive Escherichia coli infection in mice. J. Dairy Res. 72:243-249.
Nader de Macias, M. E., N. C. Romero, M. C. Apella, S. N. Gonzalez and G. Oliver. 1993. Prevention of infections produced by Escherichia coli and Listeria monocytogenes by feeding milk fermented with lactobacilli. J. Food Protect. 56:401-405.
Newman, K. E. and M. C. Newman. 2001. Evaluation of mannan oligosaccharide on the microflora and immunoglobulin status of sows and piglet performance. J. Anim. Sci. 79 (suppl. 1):189. (Abstr.)
Nisbet, D. 2002. Defined competitive exclusion cultures in the prevention of enteropathogen colonisation in poultry and swine. Antonie Van Leeuwenhoek 81: 481-486.
Ohashi, Y., R. Inoue, K. Tanaka, T. Matsuki, Y. Umesaki and K. Ushida. 2001. Lactobacillus casei strain shirota-fermented milk stimulates indigenous Lactobacilli in the pig intestine. J. Nutr. Sci. Vitaminol. 47:172-176.
O’Quinn, P. R., D. W. Funderburke and G. W. Tibbetts. 2001. Effects of dietary supplementation with mannan oligosaccharides on sow and litter performance in a commercial production system. J. Anim. Sci. 79(suppl. 1):212. (Abstr.)
Paubert-Braquet, M., X. H. Gan, C. Gaudichon, N. Hedef, A. Serikoff, C. Bouley, B. Bonavida and B. Braquet. 1995. Enhancement of host resistance against Salmonella typhimurium in mice fed a diet supplemented with yogurt or milks fermented with various Lactobacillus casei strains. Int. J. Immunother. 11:153-161.
Pedersen, K. and G. W. Tannock. 1989. Colonization of the porcine gastrointestinal tract by lactobacilli. Appl. Environ. Microbiol. 55:279-283.

Perdigon, G., C. M. Galdeano, J. Valdez and M. Medici. 2002. Interation of lactic acid bacteria with the gut immune system. European J. Clin. Nutr. 56(suppl. 4):S21-S26.
Perdigon, G., E. Vintini, S. Alvarez, M. Medina and M. Medici. 1999. Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. J. Dairy Sci. 82:1108-1114.
Perdigon, G., M. E. N. de Macias, S. Alvarez, G. Oliver and A. P. de R. Holgado. 1988. Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. Immunology. 63:17-23.
Perdigon, G., M. E. N. de Macias, S. Alvarez, G. Oliver and A. A. P. de Ruiz Holgado. 1990a. Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. J. Dairy Res. 57:255-264.
Perdigon, G., S. Alvarez, M. E. N. De Macias, M. E. Roux and A. P. de Ruiz Holgado. 1990b. The oral administration of lactic acid bacteria increase the mucosal intestinal immunity in response to enteropathogens. J. Food Prot. 53:404-410.
Perdigon, G., S. Alvarez and A. A. P. de Ruiz Holgado. 1991. Immunoadjuvant activity of oral Lactobacillus casei: influence of dose on the secretory immune response and protective capacity in intestinal infections. J. Dairy Res. 58:485-496.
Pollmann, D. S., D. M. Danielson, W. B. Wren and E. R. Peo. 1980a. Influence of Lactobacillus acidophilus inoculum on gnotobiotic and conventional pigs. J. Anim. Sci. 51:629-637.
Pollmann, D. S., D. M. Danielson and E. R. Peo. 1980b. Effect of Lactobacillus acidophilus on starter pigs fed a diet supplemented with lactose. J. Anim. Sci. 51: 638-644.
Revajova, V., M. Levkutova, J. Pistl, R. Herich, A. Bomba and M. Levkut. 2000. The influence of colonization by Lactobacillus sp. and E. coli K 88+ on lymphocyte subpopulations in the peripheral blood of gnotobiotic piglets. Acta Vet. Brno. 69:195-199.
Robinson, I. M., M. J. Allison and J. A. Bucklin. 1981. Characterization of the cecal bacteria of normal pigs. Appl. Environ. Microbiol. 41:950-955.
Robinson, I. M., S. C. Whipp, J. A. Bucklin and M. J. Allison. 1984. Characterization of predominant bacteria from the colons of normal and dysenteric pigs. Appl. Environ. Microbiol. 48:964-969.
Rogelj, I., B. B. Matijasic, A. C. Majhenic and S. Stojkovic. 2002. The survival and persistence of Lactobacillus acidophilus LF221 in different ecosystems. Int. J. Food Microbiol. 76:83-91.
Russell, E. G. 1979. Types and distribution of anaerobic bacteria in the large intestine of pigs. Appl. Environ. Microbiol. 37: 187-193.
Salanitro, J. P., I. G. Blake and P. A. Muirhead. 1977. Isolation and identification of fecal bacteria from adult swine. Appl. Environ. Microbiol. 33:79-84.
SAS Institute, Inc. 1999. SAS/STAT User’s guide. Releasasse 8.02 Ed. SAS Institute, Inc. Cary, NC, USA.
Shu, Q., F. Qu and H. S. Gill. 2001. Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J. Pediatr. Gastro. Nutr. 33:171-177.
Tannock, G. W. 1999. Probiotics: a critical review. Horizon Scientific Press, Wymondham, England.

Tejada-Simon, M. V., J. H. Lee, Z. Ustunol and J. J. Pestka. 1999. Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin A responses to cholera toxin in mice. J. Dairy Sci. 82:649-660.
Tizard, I. 1992. Veterinary Immunology: An Introduction. 4th ed. W. B. Saunders, Philadelphia. pp.1-7.
Tortuero, F., J. Rioperez, E. Fernandez and M. L. Rodriguez. 1995. Response of piglets to oral administration of lactic acid bacteria. J. Food Protec. 58:1369-1374.
Tsai, C. C., H. Y. Hsih, H. H. Chiu, Y. Y. Lai, J. H. Liu, B. Yu and H. Y. Tsen. 2005. Antagonistic activity against Salmonella infection in vitro and in vivo for two Lactobacillus strains from swine and poultry. Int. J. Food Microbiol. 102:185-194.
Tsukada, C., H. Yokoyama, C. Miyaji, Y. Ishimoto, H. Kawamura and T. Abo. 2003. Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of β-glucan. Cell. Immunol. 221:1-5.
Tuchscherer, M., B. Puppe, A. Tuchscherer and E. Kanitz. 1998. Effects of social status after mixing on immune, metabolic, and endocrine responses in pigs. Physiol. Behav. 64:353-360.
Tuchscherer, M., E. Kanitz, W. Otten and A. Tuchscherer. 2002. Effects of prenatal stress on cellular and humoral immune responses in neonatal pigs. Vet. Immunol. Immunopathol. 86:195-203.
van Heugten, E., D. W. Funderburke and K. L. Dorton. 2003. Growth performance, nutrient digestibility, and fecal microflora in weanling pigs fed live yeast. J. Anim. Sci. 81:1004-1012.
Varley, M. A. 1995. The Neonatal Pig: Development and Survival. CAB International, Wallingford, UK.

Varley, M. A. and J. Wiseman. 2001. The Weaner Pig: Nutrition and Management. CABI Pub. New York.
Veum, T. L., J. Reyes and M. Ellersieck. 1995. Effect of supplemental yeast culture in sow gestation and lactation diets on apparent nutrient digestibilities and reproductive performance through one reproductive cycle. J. Anim. Sci. 73:1741-1745.
White, L. A., M. C. Newman, G. L. Cromwell and M. D. Lindemann. 2002. Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. J. Anim. Sci. 80:2619-2628.
Wilson, M. R. 1974. Immunologic development of the neonatal pig. J. Anim. Sci. 38:1018-1021.
Yabiki, T., M. Kashiwazaki and S. Namioka. 1974. Quantitative analysis of three classes of immunoglobulins in serum of newborn pigs and milk of sows. Am. J. Vet. Res. 35:1483-1489.
Yasui, H., K. Shida, T. Matsuzaki and T. Yokokura. 1999. Immunomodulatory function of lactic acid bacteria. Antonie van Leeuwenhoek. 76:383-389.
Yuki, N., K. Watanabe, A. Mike, Y. Tagami, R. Tanaka, M. Ohwaki and M. Morotomi. 1999. Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: selective isolation from faeces and identification using monoclonal antibodies. Int. J. Food Microbiol. 48:51-57.
Zani, J. L., F. Weykamp da Cruz, A. Freitas dos Santos and C. Gil-Turnes. 1998. Effect of probiotic CenBiot on the control of diarrhea and feed efficiency in pigs. J. Appl. Microbiol. 84:68-71.
Zapata, L. E., A. M. Martinez, M. A. Coba, V. G. Perez-Mendoza, M. L. Angeles, A. M. Anaya, F. Diaz and J. A. Cuaron. 2002. Productive performance and specific immunoglobulin G response in sows and their offspring fed a live strain of Saccharomyces cerevisiae. J. Anim. Sci. 80 (Suppl. 1):282.
Zhou, J. Z., Q. Shu, K. J. Rutherfurd, J. Prasad, M. J. Birtles, P. K. Gopal and H. S. Gill. 2000a. Safety assessment of potential probiotic lactic acid bacterial strains Lactobacillus rhamnosus HN001, Lb . acidophilus HN017, and Bifidobacterium lactis HN019 in BALB/c mice. Int. J. Food Microbiol. 56:87-96.
Zhou, J. Z., Q. Shu, K. J. Rutherfurd, J. Prasad, P. K. Gopal and H. S. Gill. 2000b. Acute oral toxicity and bacterial translocation studies on potentially probiotic strains of lactic acid bacteria. Food Chem. Toxicol. 38:153-161.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34558-
dc.description.abstract本試驗之目的在研究 1) 母豬懷孕後期與泌乳期間飼糧中添加酵母與乳酸菌對其仔豬生長性能及免疫力之影響;2) 哺乳仔豬餵飼酵母和乳酸菌對生長、糞便微生物組成與免疫能力之影響。試驗一使用懷孕滿 11 週之母豬 80 頭,自懷孕 11 週起至哺乳 3 週止。四個飼糧處理組分別為 1) 對照組;2) 5 × 109 CFU/day 酵母組;3) 4 × 108 CFU/day 乳酸菌組及 4) 酵母及乳酸菌混合組。試驗期間收集血液樣本,分析淋巴細胞增生能力與血漿中免疫球蛋白 G (IgG) 濃度,並記錄出生活仔豬數、出生窩重、離乳仔豬數及離乳窩重。試驗二則分成六組,依序為1) 藥物組;2) 空白組;3) 離乳前餵飼乳酸菌組;4) 離乳後飼餵乳酸菌組;5) 離乳前後皆餵飼乳酸菌組及 6) 離乳前後皆飼餵酵母組。試驗期自仔豬 2 週齡至 8 週齡為止,酵母與乳酸菌發酵乳於離乳前分別口服給予 1.3 × 109 CFU/day 及 1.5 × 1011 CFU/day,而離乳後階段則混合 6.5 × 109 CFU/kg 及 2 × 1011 CFU/kg 於飼料中。試驗期間收集仔豬血液與新鮮糞便樣品進行血漿 IgG 濃度與糞便微生物組成分析。並記錄仔豬之週增重、下痢發生情況及飼料採食量。第一個試驗結果顯示,3 日齡仔豬之血漿 IgG 濃度於乳酸菌組或酵母與乳酸菌共同添加組會顯著的高於對照組 (39.4, 38.7 vs. 35.4 mg/mL)。3 日齡仔豬淋巴細胞增生能力也顯示酵母組會有較高的 T 細胞依賴性 B 細胞增生能力的趨勢。酵母組的疾病死亡率較對照組降低 1.8 倍,離乳體重會比對照組增加 7%,酵母與乳酸菌混合組亦會增加 8% 的離乳體重。第二個試驗結果顯示,離乳前後皆餵飼酵母之處理於試驗結束時,血漿中 IgG 濃度會顯著較藥物及空白組高 (17.5 vs. 14.2, 15.1 mg/mL)。在離乳後兩週的糞便微生物組成,則是藥物、離乳後或離乳前後皆餵飼乳酸菌以及酵母之處理的糞便中大腸菌數皆會較試驗前降低,但各組間糞便中乳酸桿菌數皆相似。生長性能方面雖各組間無顯著差異,但離乳前後皆餵飼乳酸菌組在試驗結束時,會有較重之體重 (17.48 kg),較其他組增加 3 ~ 4.5%,下痢頭數最低,僅 2.3 頭。綜合而言,母豬懷孕後期至泌乳階段添加酵母對仔豬有最佳之表現,而哺乳仔豬於離乳前後餵飼乳酸菌會有最佳的效果。zh_TW
dc.description.abstractThe present study was to investigate 1) effect of dietary supplementation of yeast and lactic acid bacterium (LAB) during sows’ late-gestation and lactation period on growth performance and immunity of piglets; 2) effect of feeding yeast and LAB on growth, fecal microbial composition and immune competence of nursery piglets. The first experiment used eighty pregnant sows starting from 11 weeks of gestation through 3 weeks of nursing. Four dietary treatments were 1) control, 2) 5 × 109 CFU/day yeast, 3) 4 × 108 CFU/day LAB and 4) yeast plus LAB. Blood samples were collected for assay of lymphocyte proliferation and immunoglobulin G (IgG) concentration. Born alive piglet number, birth weight litter, weanling piglet number and litter weanling weight were recorded. Second experiment had six treatment groups as 1) medicated, 2) no additive, 3) pre-weanling LAB feeding, 4) post-weanling LAB feeding, 5) peri-weanling LAB feeding and 6) peri-weanling yeast feeding. Experiment period started from 2 weeks till 8 weeks of age. Yeast and LAB fermented milk was dosed orally at 1.3 × 109 CFU/day and 1.5 × 1011 CFU/day in pre-weanling period, and blended in feed at 6.5 × 109 CFU/kg and 2 × 1011 CFU/kg in post-weanling period, respectively. Blood and fecal samples were collected for measuring plasma IgG concentration and fecal microbial composition of piglets. Weekly weight gain, diarrhea occurrence and feed intake of piglets were recorded. The first experiment results showed that plasma IgG concentration of piglets in LAB or yeast plus LAB group were significantly higher than control group (39.4 and 38.7 vs. 35.4 mg/mL) at 3 days of age. The lymphocyte proliferation competent in yeast group had higher T cell dependent B cell proliferation competence. Yeast treatment deceased 1.8 folds of mortality, and increased 7% of weanling weight compared to control. Yeast plus LAB also increased 8% of weanling weight. Second experiment results indicated that peri-weanling feeding yeast group had higher IgG concentration compared to medicate and no additive group (17.5 vs. 14.2 and 15.1 mg/mL). The medicated, post-weanling and peri-weanling LAB feeding and peri-weanling yeast feeding groups decreased fecal coliform concentration at two weeks post-weanling compared to the initial of experiment. There was no difference in growth among groups, but peri-weanling feeding LAB had a numerically heavier body weight (17.48 kg) at the end of experiment, which was 3 ~ 4.5% higher than other groups. In conclusion, the dietary supplementation of yeast at sows’ late-gestation to lactation period and peri-weanling feeding LAB had the best protection to nursery piglets.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:15:06Z (GMT). No. of bitstreams: 1
ntu-95-R92626010-1.pdf: 802330 bytes, checksum: 9afcd07982ee90fec4bf193e85c83edf (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄 i
表次 ii
圖次 iii
壹、 摘要 1
貳、 緒言 2
參、 文獻檢討 4
肆、 材料與方法 31
伍、 結果與討論 38
陸、 結論 54
柒、 參考文獻 55
捌、 英文摘要 67
玖、 附錄 68
dc.language.isozh-TW
dc.subject酵母zh_TW
dc.subject免疫能力zh_TW
dc.subject仔豬zh_TW
dc.subject乳酸菌zh_TW
dc.subjectimmunityen
dc.subjectyeasten
dc.subjectlactic acid bacteriumen
dc.subjectpigleten
dc.title酵母與乳酸菌對仔豬生長性能及免疫能力之影響zh_TW
dc.titleEffects of Yeast and Lactic Acid Bacterium on Growth Performance and Immunity of Pigletsen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree碩士
dc.contributor.oralexamcommittee沈添富(Tian-Fuh Shen),魏恆巍(Hen-Wei Wei),林榮信(Rong-Shinn Lin),李德南(Der-Nan Lee)
dc.subject.keyword酵母,乳酸菌,仔豬,免疫能力,zh_TW
dc.subject.keywordyeast,lactic acid bacterium,piglet,immunity,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2006-02-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept畜產學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
783.53 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved