Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34482
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李慧梅
dc.contributor.authorChih-Cheng Wuen
dc.contributor.author吳致呈zh_TW
dc.date.accessioned2021-06-13T06:10:51Z-
dc.date.available2006-04-20
dc.date.copyright2006-04-20
dc.date.issued2006
dc.date.submitted2006-04-04
dc.identifier.citation1. Adachi, M., Kousaka, Y., Okuyama, K., Unipolar and bipolar diffusion charging of ultrafine aerosol particles. Journal of Aerosol Science, 16(2), 109-123, 1985.
2. American Conference of Governmental Industrial Hygienists (ACGIH), Threshold Limit Values and Biological Exposure Indices. Cincinnati, Ohio, ACGIH, 2001.
3. Association of Home Appliance Manufacturers (AHAM), Portable cord-connected air cleaner performance measurement standard. ANSI/AHAM AC-1, 1988.
4. ASTM D5116-97, Standard guide for small-scale environmental chamber determinations of organic emissions from indoor materials/products. 1997.
5. Benes, M., & Holub, R.F., Aerosol wall deposition in enclosures investigated by means of a stagnant layer. Environment International, 22(Suppl. 1), S883-S889, 1996.
6. Boelter, K.J., Davidson, J.H., Ozone generation by indoor, electrostatic air cleaners. Aerosol Science and Technology, 27, 689-708, 1997.
7. Boeniger, M.F., Use of One Generating Devices to Improve Indoor Air Quality. American Industrial Hygiene Association Journal, 56(6), 590-598, 1995.
8. Bracken, T. D., Small Air Ion Properties. Chapter 1, l-12, CRC Press, Boca Raton, FL, 1987.
9. Challenger, O., Braven, J., Harwood, D., Rosen, K., Richardson, G., Indoor Air Quality Part 1: Negative Air Ionisation and the Generation of Hydrogen Peroxide. The Science of the Total Environment, 177, 215-219, 1996.
10. Cooper, G., Langer, G., & Rosinski, J., Submicron aerosol losses in aluminized Mylar bags. Journal of Applied Meteorology, 18, 57-68, 1979.
11. Crowley, J.M., Leri, D., Dahlhoff, G., Levit, L., Equivalent circuits for air ionizers used in static control. Journal of Electrostatics, 61, 71-83, 2004.
12. Crump, J.G., Flagan, R.C., & Seinfeld, J.H., Particle wall loss rates in vessels. Aerosol Science and Technology, 2(3), 303-309, 1983.
13. Crump, J.G., & Seinfeld, J.H., Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape. Journal of Aerosol Science, 12(5), 405-415, 1981.
14. Daniels, S.L., Applications of air ionization for control of VOCs and PMx. 94th Annual Conference of Air & Waste Management Association, paper 918, 2001.
15. Daniels, S.L., On the ionization of air for removal of noxious effluvia. IEEE Transactions on Plasma Science, 30, 1471-1481, 2002.
16. Eduard, W., Sandven, P., Levy, F., Serum IgG antibodies to mold spores in two Norwegian populations: relationship to respiratory and work-related symptoms. American Journal of Industrial Medicine, 24, 207-222, 1993.
17. Frost, C., Stacy, D. L., Applications of Negative Air Ionization for Removal of Volatile Organic Compounds (VOCs) and Particulate Matter, 2nd NSF International Conference on Indoor Air Health, 346-352, 2001.
18. Fujii, T., Yukio, A, Removal of NOx by DC corona reactor with water, Journal of Electrostatics, 51-52, 8-14, 2001.
19. Fujioka, N., Tsunoda, Y., Sugimura, A., Arai, K., Influence of humidity on variation of ion mobility with life time in atmospheric air. IEEE Transactions on Power Apparatus and Systems, 102(4), 911-917, 1983.
20. Futamura, S., Zhang, A.H., Yamamoto, T., The dependence of nonthermal plasma behavior of VOCs on their chemical structures. Journal of Electrostatics, 42, 51-62, 1997.
21. Goldstein, N.I., Goldstein, R.N., Merzlyak, M.N., Negative air ions as a source of superoxide. International Journal of Biometeteorology, 36, 118-122, 1992.
22. Grabarczyk, Z., Effectiveness of indoor air cleaning with corona ionizers. Journal of Electrostatics, 51-52, 278-283, 2001.
23. Hirota, K., Arai, H., Hashimoto, S., Electron-beam decomposition of carbon tetrachloride in air/nitrogen. Bulletin of the Chemical Society of Japan, 73, 2719-2724, 2000.
24. Hõrrak, U., Salm, J., Tammet, H., Bursts of intermediate ions in atmospheric air. Journal of Geophysical Research, 103(D12), 13909-13915, 1998.
25. Huertas, M.L., Fontan, J., Gonzalez, J., Evolution times of tropospheric negative ions. Atmospheric Environment, 12, 2351-2362, 1978.
26. Huyser, E.S., Free-Radical Chain Reactions, 70-84. Wiley-Interscience, New York, 1970.
27. Ingold, K.U., Oxidative Stress, Steacie Institute for Molecular Sciences, http://www.sirns/nrc.ca/report99.pdf, 4-5, 1999.
28. John, W., Particle-surface interactions: charge transfer, energy loss, resuspension, and deagglomeration. Aerosol Science and Technology, 23, 2-24, 1995.
29. Kimberly J. B., Jane, H.D., Ozone generation by indoor, electrostatic air cleaners. Aerosol Science and Technology, 27(6), 689-708, 1997.
30. Kondrashova, M.N., Grigorenko, E.V., Tikhonov, A.N., Sirota, T.V., Temnov, A.V., Stavrovskaja, I.G., Kosyakova, N.I., Lange, N.V., Tikhonov, V.P., The primary physico-chemical mechanism for the beneficial biological/medical effects of negative air ions. IEEE Transactions on Plasma Science, 28, 230-237, 2000.
31. Kosenko, E.A., Kaminsky, Y.G., Stavrovskaya, I.G., Sirota, T.V., Kondrashova, M.N., The stimulatory effect of negative air ions and hydrogen peroxide on the activity of superoxide dismutase. FEBS Letters, 410, 309-312, 1997.
32. Krueger, A.P., Reed, E.J., Biological impact of small air ions. Science, 193, 1209-1213, 1976.
33. Lee, B.U., Yermakov, M., Grinshpun, S.A., Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission. Atmospheric Environment, 38, 4815-4823, 2004.
34. Lee, B.U., Yermakov, M., Grinshpun, S.A., Unipolar ion emission enhances respiratory protection against fine and ultrafine particles. Journal of Aerosol Science, 35, 1359-1368, 2004.
35. Li, C.S., Hsu, L.Y., Home dampness and childhood respiratory symptoms in a subtropical climate. Archives of Environmental Health, 51(1), 42-46, 1996.
36. Lin, C.Y., Li, C.S., Effectiveness of titanium dioxide photocatalyst filters for controlling bioaerosols. Aerosol Science and Technology, 37, 162-170, 2003.
37. Liu, L., Guo, J., Li, J., Sheng, L., The effect of wire heating and configuration on ozone emission in a negative ion generator. Journal of Electrostatics, 48, 81-91, 2000.
38. Luts, A., Evolution of negative small ions at enhanced ionization. Journal of Geophysical Research, 100(D1), 1487-1496, 1995.
39. Luts, A., Salm, J., Chemical composition of small atmospheric ions near the ground. Journal of Geophysical Research, 99(D5), 10781-10785, 1994.
40. Masaharu, N., Miklos H., A study on the decomposition of volatile organic compounds by pulse corona. Journal of Electrostatics, 40-41, 687-692, 1997.
41. Mayya, Y.S., Sapra, B.K., Khan, A., Sunny, F., Aerosol removal by unipolar ionization in indoor environments. Journal of Aerosol Science, 35, 923-941, 2004.
42. McMurry, P.H., & Rader, D.J., Aerosol wall losses in electrically charged chambers. Aerosol Science and Technology, 4, 249-268, 1985.
43. Melbostad, E., Eduard, W., Skogstad, A., Sandven, P., Lassen, J., Sostrand, P., Heldal, K., Exposure to bacterial aerosols and work-related symptoms in sewage workers. American Journal of Industrial Medicine, 25, 59-63, 1994.
44. Michael, J. M., Betty, B. W., Robert, H. D., Larry, S., Layra, S., Effect of an Electronic Air Cleaner and Negative Ionizer on the Population of Indoor Mold Spores. Annals of Allergy, 59, 192-194, 1987.
45. Nakane, H., Asami, O., Yamada, Y., Ohira, H., Effect of negative air ions on computer operation, anxiety and salivary chromogranin a-like immunoreactivity. International Journal of Psychophysiology, 46, 85-89, 2002.
46. National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, Fundamental Challenges in Electron-Driven Chemistry, Workshop Report, http://www.lbl.gov/ICSD/mccurdy/workshop-f1nal-1.html, October 9-10, 1998.
47. Niki, E., Atmospheric Oxidation and Antioxidants. Volume 3, Scott, G. Editor, 1-8. Elsevier, London, 1993.
48. Nomura, Y., Hopke, P.K., Fitzgerald, B., & Mesbah, B., Deposition of particles in a chamber as a function of ventilation rate. Aerosol Science and Technology, 27, 62-72, 1997.
49. Offermann, F.J., Sextro, R.G., Fisk, W.J., Grimsrud, D.T., Nazaroff, W.W., Nero, A.V., Revzan, K.L., & Yater, J., Control of respirable particles in indoor air with portable air cleaners. Atmospheric Environment, 19, 1761-1771, 1985.
50. Oh, H., Park, H., & Kim, S., Effects of particle shape on the unipolar diffusion charging of nonspherical particles. Aerosol Science and Technology, 38, 1045-1053, 2004.
51. Okuyama, K., Kousaka, Y., Yamamoto, S., & Hosokawa, T., Particle loss of aerosols with particle diameter between 6 and 2000 nm in stirred tank. Journal of Colloid and Interface Science, 110(1), 214-223, 1986.
52. Park, S.H., Kim, H.O., Han, Y.T., Kwon, S.B., & Lee, K.W., Wall loss rate of polydispersed aerosols. Aerosol Science and Technology, 35, 710-717, 2001.
53. Parts, T.E., Luts, A., Observed and simulated effects of certain pollutants on small air ion spectra: I. Positive ions. Atmospheric Environment, 38, 1283-1289, 2004.
54. Perkins, M.D., Eisele, F.L., First mass spectrometric measurements of atmospheric ions at ground level. Journal of Geophysical Research, 89(D6), 9649-9657, 1984.
55. Pontiga, F., Soria, C., Castellaanos, A., Electrical and Chemical Model of Negative Corona in Oxygen at Atmospheric Pressure. Journal of Electrostatics, 40-41, 115-120, 1997.
56. Rehbein, N., Cooray, V., NOx production in spark and corona discharges. Journal of Electrostatics, 51-52, 333-339, 2001.
57. Richardson, G., Eick, S.A., Harwood, D.J., Rosén, K.G., Dobbs, F., Negative air ionisation and the production of hydrogen peroxide. Atmospheric Environment, 37, 3701-3706, 2003.
58. Ryushi, T., Kita, I., Sakurai, T., Yasumatsu, M., Isokawa, M., Aihara, Y., Hama, K., The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise. International Journal of Biometeteorology, 41, 132-136, 1998.
59. Salem, H., Gardner, D.E., Health aspects of microbial bioaerosol, in atmospheric microbial aerosols theory and applications. Lighthart, B., Mohr, A.J. editors, Chapman & Hall, New York, London, 1994.
60. Shargawi, J.M., Theaker, E.D., Drucker, D.B., MacFarlane, T., Duxbury, A.J., Sensitivity of Candida albicans to negative air ion streams. Journal of Applied Microbiology, 87, 889-897, 1999.
61. Skalny, J.D., Mikoviny, T., Matejcik, S., Mason, N.J., An analysis of mass spectrometric study of negative ions extracted from negative corona discharge in air. International Journal of Mass Spectrometry, 233, 317-324, 2004.
62. Skulachev, V.P., Biochemical Mechanisms of Evolution and the Role of Oxygen, http://protein.bio.msu/sUIbiokhirniya/contents/v63/fu1I/63111570.html.
63. Smirnov, B.M., Cluster Ions and Van der Waals Molecules. Gordon and Breach, Philadelphia, 18-24, 1992.
64. Stacy, L.D., Engineered Solutions for Mitigation of IAQ Problems. Proceeding Second NSF International Conference on Indoor Air Health, 243-249, 2001.
65. Stacy, L.D., Fox, M.T., Engineering Design for Indoor Air Environments: Perception vs. Reality. First NSF International Conference on Indoor Air Health, 65-74, 1999.
66. Stavrovskaya, I.G., Optimization of energy dependent processes in mitochondria after inhalation of negative air ions. Biofizika, 43, 766-771, 1998.
67. Tammet, H., Geophysics, Astronomy, and Acoustics, Atmospheric Electricity, B. Air Ions, CRC Handbook of Chemistry & Physics, 14, 30-32, 1997.
68. Tammet, H., Reduction of air ion mobility to standard conditions. Journal of Geophysical Research, 103(D12), 13933-13937, 1998.
69. Thuillard, M., Electric mobility measurements of small ions in the temperature range -40-20°C at constant relative humidity of 87%. Journal of Aerosol Science, 26(2), 219-225, 1995.
70. Unger, L., Boulaud, D., Borra, J.P., Unipolar field charging of particles by electrical discharge: effect of particle shape. Journal of Aerosol Science, 35, 965-979, 2004.
71. Weber, J.M., Kelly, J.A., Nielsen, S.B., Ayotte, P., Johnson, M.A., Isolating the Spectroscopic Signature of a Hydration Shell with the Use of Clusters: Superoxide Tetrahydrate, Science, 287, 2461-2463, 2000.
72. Wiedensohler, A., Büscher, P., Hansson, H.C., Martinsson, B.G., Stratmann, F., Ferron, G., Busch, B., A novel unipolar charger for ultrafine aerosol particles with minimal particle losses. Journal of Aerosol Science, 25(4), 639-649, 1994.
73. Wu, C.C., Lee, G.W.M., The temporal aerosol size distribution in indoor environment with negative electric discharge. Journal of Aerosol Science, 34, Supplement 1, S999-S1000, 2003.
74. Wu, C.C., Lee, G.W.M., Oxidation of volatile organic compounds by negative air ions. Atmospheric Environment, 38, 6287-6295, 2004.
75. Wu, C.C., Lee, G.W.M., Yang, S.H., Yu, K.P., The Temporal Aerosol Size Distribution in Indoor Environment with Negative Electric Discharge. The 2003 Conference on Aerosol Science and Technology (第十屆氣膠科技研討會), 591-595, 2003.
76. Wu, H.S., Chiang, H.C., Effects of negative ions on the performance of a portable air cleaner. The conference on aerosol science and technology, 338-342, 2001.
77. Yamamoto, T., VOC Decomposition by Nonthermal Plasma Processing-A New Approach. Journal of Electrostatics, 42, 227-238, 1997.
78. Yoji, N., Yasaka, K., Takashi, S., Scavenging of Submicron particles by coarse particles under the effects of electrostatic field and particle vibration. Journal of Electrostatics, 34, 37-49, 1995.
79. Young, H.D., Physics 8th ed., Addison-Wesley, New York, 611-652, 1992.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34482-
dc.description.abstract本研究探討空氣負離子控制室內空氣污染物之研究,以瞭解空氣負離子去除室內空氣中揮發性有機污染物、懸浮微粒與生物氣膠之效能與機制。本研究經空氣負離子基礎特性研究以電極型態0.1 mm之不鏽鋼針尖於低起始放電電壓下,以誘導電極輔助進行負極針尖放電產生空氣負離子,並控制適當之放電電壓(30.0 kV以下)與低放電電流(0.01 mA以下)以dark discharge進行負極針尖放電產生穩定之空氣負離子濃度,且於部分空氣負離子反應器中以15 kV以下之放電電壓進行放電產生空氣負離子,以避免放電過程中生成臭氧與氮氧化物干擾空氣負離子與室內空氣污染物之反應。實驗結果顯示,相對溼度影響空氣負離子在室內空間中之分布,且空氣負離子濃度隨著空間距離之增加呈現對數線性遞減之趨勢(logarithmic linear tendency),在一特定之對數線性距離(log-linear distance)之後空氣負離子濃度隨著距離之增加呈現一固定濃度,本研究依據實驗數據之分析建立空氣負離子在室內空間中分布之經驗模式NAIDI Model,用以推估室內空間中空氣負離子之濃度分布。
本研究探討空氣負離子與揮發性有機污染物(chloroform、toluene 與 1,5-hexadiene)之化學反應動力機制。利用ppm濃度等級之揮發性有機污染物與不同相對濕度下之空氣負離子(相對溼度由0 到 70%之空氣負離子濃度由 1.34E6降低至1.24E6 ion cm-3)進行反應。結果顯示空氣負離子與chloroform,以及toluene 的反應級數為零級反應,而1,5-hexadiene之反應級數則為0.433級。chloroform、toluene 與1,5-hexadiene在相對溼度0到 70%之間的反應速率常數分別為1.74 至 3.07 ppb min-1, 1.07至2.66 ppb min-1, 以及 0.463至0.478 ppb0.567 min-1 。此外,空氣負離子與1,5-hexadiene的反應,會生成一個相對穩定的中間產物4-pentenal。研究結果顯示空氣負離子與揮發性有機污染物之反應屬於緩慢的氧化反應,對於低濃度範圍之揮發性有機污染物具有去除控制之效能,惟需注意是否有危害性之反應副產物產生。
本研究探討空氣負離子控制室內懸浮微粒之研究,實驗結果顯示空氣負離子有效去除氣相中懸浮微粒PM2.5與次微米微粒,於操作空氣負離子產生裝置54分鐘之後,次微米氣膠粒徑分布之個數濃度大部分皆降至1000 number cm-3以下,其中粒径835 nm由4599降至495 number cm-3,去除效率約89.2%,1.5小時後PM2.5由0.164 mg m-3降為0.084 mg m-3,去除效率約50%。空氣負離子控制多粒徑分布鹽類氣膠之實驗結果顯示,懸浮微粒之粒徑影響空氣負離子控制懸浮微粒之效能,且懸浮微粒之粒徑越小去除效能越佳。測試箱表面材質特性影響空氣負離子控制懸浮微粒之實驗結果顯示,不鏽鋼、木板、PVC板、壁紙與水泥漆等表面材質中表面電阻(surface resistivity)越高與電導度(electrical conductivity)越低的表面材質(例如木板)其有效清淨速率ECR (effective cleaning rate)越高,此外材質表面之粗糙度亦為空氣負離子控制懸浮微粒之影響因子。空氣負離子對懸浮微粒之去除機制,在於空氣負離子致使懸浮微粒表面帶負電荷,並藉由電移動度將帶電氣膠自氣相中移動至帶正電荷或電中性之物體表面去除。
本研究探討空氣負離子對生物氣膠之移除與殺菌效能,實驗結果顯示空氣負離子對四種生物氣膠(Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) endospores, spores of Penicillium citrinum (P. citrinum), yeast cells of Candida famata (C. famata) var. flareri)之移除效率隨生物氣膠在空氣負離子反應器中的停留時間增加而增加,例如E. coli在停留時間為3.1, 6.2, 7.8, 10.4與15.5分鐘之移除效率分別為12.5, 33.8, 42.1, 68.2與80.1%。實驗結果顯示空氣負離子對生物氣膠之移除效能為B. subtilis endospores > E. coli > spores of P. citrinum = yeast cells of C. famata。本研究以survival factor (SF)評估空氣負離子對生物氣膠之殺菌效能,SF小於1或趨近於1,分別代表殺菌效能顯著或不具殺菌效能。實驗結果顯示整體實驗之SF為0.96 +- 0.19,表示空氣負離子對生物氣膠不具有效的殺菌效能。本研究結果顯示空氣負離子對生物氣膠的控制機制,主要為空氣負離子使生物氣膠帶電而加以移除。
zh_TW
dc.description.abstractThis study investigated the control of volatile organic compounds (VOCs), particles, and bioaerosols with the aid of negative air ions (NAIs) in indoor environment. The NAIs were generated by negative electric discharge; the discharge was kept at less than 0.01 mA and 30.0 kV. The reaction chamber was designed as a dark discharge to prevent the generation of O3 and NOx. This study investigated the concentration gradient of NAI at various temperatures, relative humidities and distances in indoor air, and developed an empirical model for concentration gradient of NAI as well. Experimental results indicate that the concentration gradient of NAI was little affected by temperatures between 23.9C and 25.7C. However, the influence of relative humidity on the concentration gradient of NAI was complicated. There were four trends for the relationship between NAI concentration and relative humidity at different distances from the discharge electrode. Additionally, the regression analysis of NAI concentrations and distances from the discharge electrode indicated a logarithmic linear (log-linear) relationship; the distance of log-linear tendency decreased with an increase in relative humidity. Moreover, an empirical model for the concentration gradient of NAI generated in indoor air was developed for estimating the NAI concentration.
This study investigated the reactions of NAI and VOCs in a batch reactor. Three species of VOCs - chloroform, toluene and 1,5-hexadiene - were selected to react with NAI at relative humidity of 0, 25 and 70%. The NAI was generated by a negative electric discharge at 15.0 kV. The NAI concentrations were 1.34E6 to 1.24E6 ion cm-3 at relative humidities between 0 and 70%. The results indicate that the order of the reactions of chloroform and toluene with NAI was zero, and 0.433 order for 1,5-hexadiene. The reaction rate constants of chloroform, toluene and 1,5-hexadiene were 1.74 - 3.07 ppb min-1, 1.07 - 2.66 ppb min-1 and 0.463 - 0.478 ppb0.567 min-1 at relative humidity from 0 to 70%. The effect of relative humidity on the reaction kinetics was obvious for chloroform and toluene but not for 1,5-hexadiene. The reaction between 1,5-hexadiene and NAI generated a relatively stable intermediate species, 4-pentenal. The oxidation of chloroform, toluene and 1,5-hexadiene by NAI proceeded slowly.
This study investigated the control of particles with the aid of NAIs in an indoor environment. The results indicated that the PM2.5 and submicron particle were obviously removed by NAIs. Moreover, this work studied how wall surface materials influence the removal of airborne particles with NAIs. Five wall surface materials – stainless steel, wood, PVC (polyvinyl chloride), wallpaper and cement paint – were applied to the inner surface of a test chamber. The results indicated that NAI could remove particles from the wood and PVC wall surfaces substantially more effectively than from other wall materials. The various electrical characteristics and roughness of the wall materials may have been responsible for the associated of the various ECRs (effective cleaning rate) with the various wall surface materials.
Although negative air ionizers have been used in indoor air cleaning, little study have been done on the elimination of bioaerosols by NAIs. This study investigated the removal and germicidal effects of NAIs on bioaerosols. Bioaerosols, Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) endospores, spores of Penicillium citrinum (P. citrinum), and yeast cells of Candida famata (C. famata) var. flareri, were produced by six-jet Collison nebulizer, which aerosolized the suspension of microorganisms in DI water and PBS (phosphate buffer solution). NAIs were generated at a concentration of 5E5 ions cm-3 in an experimental chamber (9.32E-2 m3) by negative electric discharge at 10 kV. The removal and germicidal efficiencies of bioaerosols were measured by aerodynamic particle sizer (APS) and high velocity impinger (AGI-30), respectively. Bioaerosols collected by AGI-30 was cultured for colony forming unit (CFU) counting. The results indicated that the removal efficiency of bioaerosols was enhanced by NAIs and increased with the retention time of bioaerosol in the experimental chamber. The germicidal efficiency of bioaerosols was evaluated by the survival factor (SF). The SF less than 1 and approach of 1, respectively, showed that the NAIs with and without germicidal efficiency of bioaerosols. The results indicated that the SF was 0.96 +- 0.19 at different retention time and relative humidity, therefore, the germicidal function of NAIs on bioaerosols was invalid. However, the removal effect of NAIs on bioaerosols was the major mechanism for eliminating the bioaerosols using negative air ionizers.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:10:51Z (GMT). No. of bitstreams: 1
ntu-95-D89541001-1.pdf: 4434955 bytes, checksum: 2d5633e5c0478aa427528d9de5e75d6d (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 v
表目錄 ix
圖目錄 xi
一、前言 1
1-1 研究緣起 1
1-2 研究目的 2
1-3 研究內容 2
二、文獻回顧 4
2-1空氣離子之物理性質 7
2-2空氣離子之化學性質 10
2-3空氣正離子對人體健康之影響 13
2-4空氣負離子對人體健康之影響 13
2-4-1 氧自由基與過氧化氫之影響 19
2-4-2 生物的氧化壓力與抗氧化 20
2-4-3 吸入NAIs對SOD活性的影響 20
2-4-4 個人NAIs吸入劑量 21
2-4-5 極低濃度ROS的影響 22
2-5 空氣負離子與揮發性有機物之反應 23
2-6 空氣負離子對懸浮微粒之作用 26
2-7 空氣負離子對生物氣膠之影響 29
2-8 空氣負離子研究所面臨之問題 33
三、研究設備與方法 35
3-1研究設備 35
3-1-1 空氣負離子產生設備 36
3-1-2 偵測設備與儀器 38
3-2實驗安全防護 42
3-2-1 高壓電操作之安全防護 42
3-2-2 生物氣膠操作之安全防護 46
3-3研究方法 48
3-3-1 空氣負離子基礎特性研究 48
3-3-2 空氣負離子在空間中之分布 55
3-3-3 空氣負離子控制揮發性有機污染物之研究 57
3-3-4 空氣負離子控制室內懸浮微粒之研究 62
3-3-5 空氣負離子控制生物氣膠之研究 66
四、空氣負離子基礎特性研究 70
4-1背景空氣正負離子濃度 72
4-2正負電極放電產生空氣正負離子 77
4-2-1 正極放電產生空氣正離子 77
4-2-2 負極放電產生空氣負離子 80
4-3空氣負離子與起始放電電壓之關係 83
4-4電極型態對負極放電產生空氣負離子之影響 84
4-5放電電壓與空氣負離子濃度之關係 85
4-6空氣負離子之生命週期 87
4-7空氣流體特性對產生空氣負離子之影響 88
4-8誘導電極對空氣負離子產生濃度之影響 92
4-9空氣中負極放電產生臭氧與氮氧化物之關係 98
4-10氧氣中負極放電產生臭氧之關係 104
五、空氣負離子濃度分布之特性 107
5-1空氣負離子濃度在室內空氣中之變化 108
5-2溼度對空氣負離子濃度之影響 112
5-3溫度對空氣負離子濃度之影響 116
5-4距離對空氣負離子濃度之影響 120
5-5經驗模式建立 124
5-6 NAIDI Model之建立 129
六、空氣負離子控制揮發性有機污染物之研究 138
6-1空氣負離子反應相關参數 139
6-2空氣負離子與Toluene之反應 142
6-3空氣負離子與Chloroform之反應 145
6-4空氣負離子與1,5-Hexadiene之反應 148
6-5空氣負離子與揮發性有機物之氧化反應 160
七、空氣負離子對室內懸浮微粒之影響 164
7-1室內懸浮微粒之控制 165
7-2多粒徑分布氣膠之控制 174
7-3壁面材質特性之影響 181
八、空氣負離子控制生物氣膠之研究 188
8-1 PBS溶液之干擾 188
8-2空氣負離子去除PBS氣膠 191
8-3去除PBS溶液之干擾 194
8-4生物氣膠殺菌效能之評估 197
8-5空氣負離子對E. coli生物氣膠之去除與殺菌效能 198
8-6空氣負離子對B. subtilis endospores生物氣膠
之去除與殺菌效能 204
8-7空氣負離子對P. citrinum spores生物氣膠
之去除與殺菌效能 206
8-8空氣負離子對C. famata yeast cells生物氣膠
之去除與殺菌效能 208
8-9空氣負離子對生物氣膠之去除與殺菌效能之評估 210
九、結論與建議 211
9-1綜合結論 211
9-2建議 215
十、参考文獻 217
附件一 空氣負離子之應用與專利(1) 227
空氣負離子之應用與專利(2) 231
附件二 著作目錄 233
dc.language.isozh-TW
dc.subject生物氣膠zh_TW
dc.subject空氣負離子zh_TW
dc.subject負極針尖放電zh_TW
dc.subject揮發性有機污染物zh_TW
dc.subject懸浮微粒zh_TW
dc.subjectVolatile organic compoundsen
dc.subjectNegative air ionsen
dc.subjectBioaerosolen
dc.subjectNegative electric dischargeen
dc.subjectParticleen
dc.title空氣負離子控制室內空氣污染物之研究zh_TW
dc.titleControl of Volatile Organic Compounds, Particulates, and Bioaerosols with the Aid of Negative Air Ions in Indoor Environmenten
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee李文智,陳美蓮,李芝珊,李崇德
dc.subject.keyword空氣負離子,負極針尖放電,揮發性有機污染物,懸浮微粒,生物氣膠,zh_TW
dc.subject.keywordNegative air ions,Negative electric discharge,Volatile organic compounds,Particle,Bioaerosol,en
dc.relation.page240
dc.rights.note有償授權
dc.date.accepted2006-04-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved