請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34476完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峰輝 | |
| dc.contributor.author | Ming-Hong Chen | en |
| dc.contributor.author | 陳敏弘 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:10:32Z | - |
| dc.date.available | 2006-07-24 | |
| dc.date.copyright | 2006-07-24 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-04-12 | |
| dc.identifier.citation | REFERENCE
1. Evans GR. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat Rec 2001;263(4):396-404. 2. Snider WD, Thanedar S. Target dependence of hypoglossal motor neurons during development in maturity. J Comp Neurol 1989;279(3):489-98. 3. Heath DD, 2nd, Coggeshall RE, Hulsebosch CE. Axon and neuron numbers after forelimb amputation in neonatal rats. Exp Neurol 1986;92(1):220-33. 4. Stoll G, Jander S, Myers RR. Degeneration and regeneration of the peripheral nervous system: from Augustus Waller's observations to neuroinflammation. J Peripher Nerv Syst 2002;7(1):13-27. 5. Whitworth IH, Brown RA, Dore CJ, Anand P, Green CJ, Terenghi G. Nerve growth factor enhances nerve regeneration through fibronectin grafts. J Hand Surg [Br] 1996;21(4):514-22. 6. Naff NJ, Ecklund JM. History of peripheral nerve surgery techniques. Neurosurg Clin N Am 2001;12(1):197-209, x. 7. Millesi H, Meissl G, Berger A. The interfascicular nerve-grafting of the median and ulnar nerves. J Bone Joint Surg Am 1972;54(4):727-50. 8. Millesi H, Meissl G, Berger A. Further experience with interfascicular grafting of the median, ulnar, and radial nerves. J Bone Joint Surg Am 1976;58(2):209-18. 9. Millesi H. Interfascicular nerve grafting. Orthop Clin North Am 1981;12(2):287-301. 10. Evans PJ, Mackinnon SE, Levi AD, Wade JA, Hunter DA, Nakao Y, Midha R. Cold preserved nerve allografts: changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve 1998;21(11):1507-22. 11. Evans PJ, Midha R, Mackinnon SE. The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology. Prog Neurobiol 1994;43(3):187-233. 12. J IJ-P, Jansen K, Gramsbergen A, Meek MF. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials 2004;25(9):1583-92. 13. Brunelli GA, Vigasio A, Brunelli GR. Different conduits in peripheral nerve surgery. Microsurgery 1994;15(3):176-8. 14. Meek MF, Coert JH. Clinical use of nerve conduits in peripheral-nerve repair: review of the literature. J Reconstr Microsurg 2002;18(2):97-109. 15. Suematsu N. Tubulation for peripheral nerve gap: its history and possibility. Microsurgery 1989;10(1):71-4. 16. Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 2003;5:293-347. 17. Fields RD, Le Beau JM, Longo FM, Ellisman MH. Nerve regeneration through artificial tubular implants. Prog Neurobiol 1989;33(2):87-134. 18. Chiu DT, Janecka I, Krizek TJ, Wolff M, Lovelace RE. Autogenous vein graft as a conduit for nerve regeneration. Surgery 1982;91(2):226-33. 19. Walton RL, Brown RE, Matory WE, Jr., Borah GL, Dolph JL. Autogenous vein graft repair of digital nerve defects in the finger: a retrospective clinical study. Plast Reconstr Surg 1989;84(6):944-9; discussion 950-2. 20. Risitano G, Cavallaro G, Merrino T, Coppolino S, Ruggeri F. Clinical results and thoughts on sensory nerve repair by autologous vein graft in emergency hand reconstruction. Chir Main 2002;21(3):194-7. 21. Chiu DT. Autogenous venous nerve conduits. A review. Hand Clin 1999;15(4):667-71, ix. 22. Pereira JH, Palande DD, Subramanian A, Narayanakumar TS, Curtis J, Turk JL. Denatured autologous muscle graft in leprosy. Lancet 1991;338(8777):1239-40. 23. Pereira JH, Bowden RE, Gattuso JM, Norris RW. Comparison of results of repair of digital nerves by denatured muscle grafts and end-to-end sutures. J Hand Surg [Br] 1991;16(5):519-23. 24. Norris RW, Glasby MA, Gattuso JM, Bowden RE. Peripheral nerve repair in humans using muscle autografts. A new technique. J Bone Joint Surg Br 1988;70(4):530-3. 25. Battiston B, Tos P, Cushway TR, Geuna S. Nerve repair by means of vein filled with muscle grafts I. Clinical results. Microsurgery 2000;20(1):32-6. 26. Meek MF, Varejao AS, Geuna S. Muscle grafts and alternatives for nerve repair. J Oral Maxillofac Surg 2002;60(9):1095-6; author reply 1096. 27. Navarro X, Rodriguez FJ, Labrador RO, Buti M, Ceballos D, Gomez N, Cuadras J, Perego G. Peripheral nerve regeneration through bioresorbable and durable nerve guides. J Peripher Nerv Syst 1996;1(1):53-64. 28. Madison RD, da Silva C, Dikkes P, Sidman RL, Chiu TH. Peripheral nerve regeneration with entubulation repair: comparison of biodegradeable nerve guides versus polyethylene tubes and the effects of a laminin-containing gel. Exp Neurol 1987;95(2):378-90. 29. Favaro G, Bortolami MC, Cereser S, Dona M, Pastorello A, Callegaro L, Fiori MG. Peripheral nerve regeneration through a novel bioresorbable nerve guide. ASAIO Trans 1990;36(3):M291-4. 30. Jenq CB, Coggeshall RE. Permeable tubes increase the length of the gap that regenerating axons can span. Brain Res 1987;408(1-2):239-42. 31. Knoops B, Hurtado H, van den Bosch de Aguilar P. Rat sciatic nerve regeneration within an acrylic semipermeable tube and comparison with a silicone impermeable material. J Neuropathol Exp Neurol 1990;49(4):438-48. 32. Kim DH, Connolly SE, Zhao S, Beuerman RW, Voorhies RM, Kline DG. Comparison of macropore, semipermeable, and nonpermeable collagen conduits in nerve repair. J Reconstr Microsurg 1993;9(6):415-20. 33. Rodriguez FJ, Gomez N, Perego G, Navarro X. Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials 1999;20(16):1489-500. 34. Aebischer P, Guenard V, Winn SR, Valentini RF, Galletti PM. Blind-ended semipermeable guidance channels support peripheral nerve regeneration in the absence of a distal nerve stump. Brain Res 1988;454(1-2):179-87. 35. Aebischer P, Guenard V, Brace S. Peripheral nerve regeneration through blind-ended semipermeable guidance channels: effect of the molecular weight cutoff. J Neurosci 1989;9(10):3590-5. 36. Guenard V, Valentini RF, Aebischer P. Influence of surface texture of polymeric sheets on peripheral nerve regeneration in a two-compartment guidance system. Biomaterials 1991;12(2):259-63. 37. Aebischer P, Guenard V, Valentini RF. The morphology of regenerating peripheral nerves is modulated by the surface microgeometry of polymeric guidance channels. Brain Res 1990;531(1-2):211-8. 38. Valentini RF, Sabatini AM, Dario P, Aebischer P. Polymer electret guidance channels enhance peripheral nerve regeneration in mice. Brain Res 1989;480(1-2):300-4. 39. Fine EG, Valentini RF, Bellamkonda R, Aebischer P. Improved nerve regeneration through piezoelectric vinylidenefluoride-trifluoroethylene copolymer guidance channels. Biomaterials 1991;12(8):775-80. 40. Fansa H, Schneider W, Wolf G, Keilhoff G. Influence of insulin-like growth factor-I (IGF-I) on nerve autografts and tissue-engineered nerve grafts. Muscle Nerve 2002;26(1):87-93. 41. Lewin SL, Utley DS, Cheng ET, Verity AN, Terris DJ. Simultaneous treatment with BDNF and CNTF after peripheral nerve transection and repair enhances rate of functional recovery compared with BDNF treatment alone. Laryngoscope 1997;107(7):992-9. 42. Santos X, Rodrigo J, Hontanilla B, Bilbao G. Evaluation of peripheral nerve regeneration by nerve growth factor locally administered with a novel system. J Neurosci Methods 1998;85(1):119-27. 43. Maysinger D, Morinville A. Drug delivery to the nervous system. Trends Biotechnol 1997;15(10):410-8. 44. Mosahebi A, Wiberg M, Terenghi G. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng 2003;9(2):209-18. 45. Knoops B, Ponsar C, Hubert I, van den Bosch de Aguilar P. Regeneration of lesioned cholinergic septal neurons of the adult rat can be promoted by peripheral nerve grafts and a fibrin-fibronectin-containing matrix of peripheral regeneration chambers. Brain Res Bull 1993;30(3-4):433-7. 46. Dumont CE, Born W. Stimulation of neurite outgrowth in a human nerve scaffold designed for peripheral nerve reconstruction. J Biomed Mater Res B Appl Biomater 2005;73(1):194-202. 47. Bovolenta P, Fernaud-Espinosa I. Nervous system proteoglycans as modulators of neurite outgrowth. Prog Neurobiol 2000;61(2):113-32. 48. Chau CH, Shum DK, Chan YS, So KF. Heparan sulphates upregulate regeneration of transected sciatic nerves of adult guinea-pigs. Eur J Neurosci 1999;11(6):1914-26. 49. Gunn JW, Turner SD, Mann BK. Adhesive and mechanical properties of hydrogels influence neurite extension. J Biomed Mater Res A 2005;72(1):91-7. 50. Bellamkonda R, Ranieri JP, Aebischer P. Laminin oligopeptide derivatized agarose gels allow three-dimensional neurite extension in vitro. J Neurosci Res 1995;41(4):501-9. 51. Schense JC, Hubbell JA. Three-dimensional migration of neurites is mediated by adhesion site density and affinity. J Biol Chem 2000;275(10):6813-8. 52. Adams DN, Kao EY, Hypolite CL, Distefano MD, Hu WS, Letourneau PC. Growth cones turn and migrate up an immobilized gradient of the laminin IKVAV peptide. J Neurobiol 2005;62(1):134-47. 53. Itoh S, Yamaguchi I, Suzuki M, Ichinose S, Takakuda K, Kobayashi H, Shinomiya K, Tanaka J. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res 2003;993(1-2):111-23. 54. Ranieri JP, Bellamkonda R, Bekos EJ, Gardella JA, Jr., Mathieu HJ, Ruiz L, Aebischer P. Spatial control of neuronal cell attachment and differentiation on covalently patterned laminin oligopeptide substrates. Int J Dev Neurosci 1994;12(8):725-35. 55. Woerly S, Pinet E, de Robertis L, Van Diep D, Bousmina M. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials 2001;22(10):1095-111. 56. Rafiuddin Ahmed M, Jayakumar R. Peripheral nerve regeneration in RGD peptide incorporated collagen tubes. Brain Res 2003;993(1-2):208-16. 57. Thanos PK, Okajima S, Terzis JK. Ultrastructure and cellular biology of nerve regeneration. J Reconstr Microsurg 1998;14(6):423-36. 58. Varon SS, Bunge RP. Trophic mechanisms in the peripheral nervous system. Annu Rev Neurosci 1978;1:327-61. 59. Yan Q, Elliott J, Snider WD. Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 1992;360(6406):753-5. 60. Yin Q, Kemp GJ, Frostick SP. Neurotrophins, neurones and peripheral nerve regeneration. J Hand Surg [Br] 1998;23(4):433-7. 61. Zhang Y, Campbell G, Anderson PN, Martini R, Schachner M, Lieberman AR. Molecular basis of interactions between regenerating adult rat thalamic axons and Schwann cells in peripheral nerve grafts I. Neural cell adhesion molecules. J Comp Neurol 1995;361(2):193-209. 62. Zhang Y, Campbell G, Anderson PN, Martini R, Schachner M, Lieberman AR. Molecular basis of interactions between regenerating adult rat thalamic axons and Schwann cells in peripheral nerve grafts. II. Tenascin-C. J Comp Neurol 1995;361(2):210-24. 63. Geuna S, Borrione P, Fornaro M, Giacobini-Robecchi MG. Adult stem cells and neurogenesis: historical roots and state of the art. Anat Rec 2001;265(3):132-41. 64. Tohill M, Terenghi G. Stem-cell plasticity and therapy for injuries of the peripheral nervous system. Biotechnol Appl Biochem 2004;40(Pt 1):17-24. 65. Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 2001;14(11):1771-6. 66. Matheson CR, Carnahan J, Urich JL, Bocangel D, Zhang TJ, Yan Q. Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for sensory neurons: comparison with the effects of the neurotrophins. J Neurobiol 1997;32(1):22-32. 67. Nakahara Y, Gage FH, Tuszynski MH. Grafts of fibroblasts genetically modified to secrete NGF, BDNF, NT-3, or basic FGF elicit differential responses in the adult spinal cord. Cell Transplant 1996;5(2):191-204. 68. McTigue DM, Horner PJ, Stokes BT, Gage FH. Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 1998;18(14):5354-65. 69. Tuszynski MH, Murai K, Blesch A, Grill R, Miller I. Functional characterization of NGF-secreting cell grafts to the acutely injured spinal cord. Cell Transplant 1997;6(3):361-8. 70. Blesch A, Tuszynski MH. GDNF gene delivery to injured adult CNS motor neurons promotes axonal growth, expression of the trophic neuropeptide CGRP, and cellular protection. J Comp Neurol 2001;436(4):399-410. 71. Lin FH, Yao CH, Sun JS, Liu HC, Huang CW. Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin. Biomaterials 1998;19(10):905-17. 72. Chen PR, Chen MH, Sun JS, Chen MH, Tsai CC, Lin FH. Biocompatibility of NGF-grafted GTG membranes for peripheral nerve repair using cultured Schwann cells. Biomaterials 2004;25(25):5667-73. 73. Sunderland S. The anatomy and physiology of nerve injury. Muscle Nerve 1990;13(9):771-84. 74. Lewis T, Pickering GW, Rothschild P. Centripetal paralysis arising out of arrested bloodflow to the limb. Heart 1931;16:1-32. 75. Jacques L, Kline DG. Response of the peripheral nerve to physical injury. London: Blackwell; 2000. 516-525 p. 76. Seddon HJ. Three types of nerve injury. Brain 1943;66:237-288. 77. Sunderland S. Nerves and Nerve Injuries. London: Churchill Livingston; 1978. 78. Gundersen RW, Barrett JN. Characterization of the turning response of dorsal root neurites toward nerve growth factor. J Cell Biol 1980;87(3 Pt 1):546-54. 79. Dodd J, Jessell TM. Axon guidance and the patterning of neuronal projections in vertebrates. Science 1988;242(4879):692-9. 80. Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg [Am] 2000;25(3):391-414. 81. Tuszynski MH, Gabriel K, Gage FH, Suhr S, Meyer S, Rosetti A. Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol 1996;137(1):157-73. 82. Oudega M, Hagg T. Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord. Exp Neurol 1996;140(2):218-29. 83. Fine EG, Decosterd I, Papaloizos M, Zurn AD, Aebischer P. GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap. Eur J Neurosci 2002;15(4):589-601. 84. Bloch J, Fine EG, Bouche N, Zurn AD, Aebischer P. Nerve growth factor- and neurotrophin-3-releasing guidance channels promote regeneration of the transected rat dorsal root. Exp Neurol 2001;172(2):425-32. 85. Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord. Nature 2000;403(6767):312-6. 86. Romero MI, Rangappa N, Garry MG, Smith GM. Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J Neurosci 2001;21(21):8408-16. 87. Miyata Y, Kashihara Y, Homma S, Kuno M. Effects of nerve growth factor on the survival and synaptic function of Ia sensory neurons axotomized in neonatal rats. J Neurosci 1986;6(7):2012-8. 88. Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde YA. Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 1992;360(6406):757-9. 89. Young C, Miller E, Nicklous DM, Hoffman JR. Nerve growth factor and neurotrophin-3 affect functional recovery following peripheral nerve injury differently. Restor Neurol Neurosci 2001;18(4):167-75. 90. Friedman B, Kleinfeld D, Ip NY, Verge VM, Moulton R, Boland P, Zlotchenko E, Lindsay RM, Liu L. BDNF and NT-4/5 exert neurotrophic influences on injured adult spinal motor neurons. J Neurosci 1995;15(2):1044-56. 91. Henderson CE, Camu W, Mettling C, Gouin A, Poulsen K, Karihaloo M, Rullamas J, Evans T, McMahon SB, Armanini MP and others. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 1993;363(6426):266-70. 92. Braun S, Croizat B, Lagrange MC, Warter JM, Poindron P. Neurotrophins increase motoneurons' ability to innervate skeletal muscle fibers in rat spinal cord--human muscle cocultures. J Neurol Sci 1996;136(1-2):17-23. 93. Oudega M, Hagg T. Neurotrophins promote regeneration of sensory axons in the adult rat spinal cord. Brain Res 1999;818(2):431-8. 94. Kishino A, Ishige Y, Tatsuno T, Nakayama C, Noguchi H. BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth. Exp Neurol 1997;144(2):273-86. 95. Novikov L, Novikova L, Kellerth JO. Brain-derived neurotrophic factor promotes axonal regeneration and long-term survival of adult rat spinal motoneurons in vivo. Neuroscience 1997;79(3):765-74. 96. Li L, Wu W, Lin LF, Lei M, Oppenheim RW, Houenou LJ. Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proc Natl Acad Sci U S A 1995;92(21):9771-5. 97. Utley DS, Lewin SL, Cheng ET, Verity AN, Sierra D, Terris DJ. Brain-derived neurotrophic factor and collagen tubulization enhance functional recovery after peripheral nerve transection and repair. Arch Otolaryngol Head Neck Surg 1996;122(4):407-13. 98. Shirley DM, Williams SA, Santos PM. Brain-derived neurotrophic factor and peripheral nerve regeneration: a functional evaluation. Laryngoscope 1996;106(5 Pt 1):629-32. 99. Dijkhuizen PA, Hermens WT, Teunis MA, Verhaagen J. Adenoviral vector-directed expression of neurotrophin-3 in rat dorsal root ganglion explants results in a robust neurite outgrowth response. J Neurobiol 1997;33(2):172-84. 100. Stucky CL, Shin JB, Lewin GR. Neurotrophin-4: a survival factor for adult sensory neurons. Curr Biol 2002;12(16):1401-4. 101. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993;260(5111):1130-2. 102. Lin LF, Zhang TJ, Collins F, Armes LG. Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. J Neurochem 1994;63(2):758-68. 103. Oppenheim RW, Houenou LJ, Johnson JE, Lin LF, Li L, Lo AC, Newsome AL, Prevette DM, Wang S. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 1995;373(6512):344-6. 104. Yan Q, Matheson C, Lopez OT. In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 1995;373(6512):341-4. 105. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner ML, Araki T, Johnson EM, Jr., Milbrandt J. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 1998;21(6):1291-302. 106. Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, Lampe PA, Heuckeroth RO, Kotzbauer PT, Simburger KS and others. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 1998;20(2):245-53. 107. Terenghi G. Peripheral nerve regeneration and neurotrophic factors. J Anat 1999;194 ( Pt 1):1-14. 108. Yamamori T, Fukada K, Aebersold R, Korsching S, Fann MJ, Patterson PH. The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor. Science 1989;246(4936):1412-6. 109. Feldman EL, Sullivan KA, Kim B, Russell JW. Insulin-like growth factors regulate neuronal differentiation and survival. Neurobiol Dis 1997;4(3-4):201-14. 110. Kanje M, Skottner A, Sjoberg J, Lundborg G. Insulin-like growth factor I (IGF-I) stimulates regeneration of the rat sciatic nerve. Brain Res 1989;486(2):396-8. 111. Kermer P, Klocker N, Labes M, Bahr M. Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 In vivo. J Neurosci 2000;20(2):2-8. 112. Recio-Pinto E, Ishii DN. Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells. Brain Res 1984;302(2):323-34. 113. Recio-Pinto E, Ishii DN. Insulin and insulinlike growth factor receptors regulating neurite formation in cultured human neuroblastoma cells. J Neurosci Res 1988;19(3):312-20. 114. Fernyhough P, Mill JF, Roberts JL, Ishii DN. Stabilization of tubulin mRNAs by insulin and insulin-like growth factor I during neurite formation. Brain Res Mol Brain Res 1989;6(2-3):109-20. 115. Sumantran VN, Feldman EL. Insulin-like growth factor I regulates c-myc and GAP-43 messenger ribonucleic acid expression in SH-SY5Y human neuroblastoma cells. Endocrinology 1993;132(5):2017-23. 116. Matthews CC, Feldman EL. Insulin-like growth factor I rescues SH-SY5Y human neuroblastoma cells from hyperosmotic induced programmed cell death. J Cell Physiol 1996;166(2):323-31. 117. Matthews CC, Odeh HM, Feldman EL. Insulin-like growth factor-I is an osmoprotectant in human neuroblastoma cells. Neuroscience 1997;79(2):525-34. 118. Singleton JR, Dixit VM, Feldman EL. Type I insulin-like growth factor receptor activation regulates apoptotic proteins. J Biol Chem 1996;271(50):31791-4. 119. Singleton JR, Randolph AE, Feldman EL. Insulin-like growth factor I receptor prevents apoptosis and enhances neuroblastoma tumorigenesis. Cancer Res 1996;56(19):4522-9. 120. Cheng HL, Feldman EL. Insulin-like growth factor-I (IGF-I) and IGF binding protein-5 in Schwann cell differentiation. J Cell Physiol 1997;171(2):161-7. 121. Nicoli Aldini N, Perego G, Cella GD, Maltarello MC, Fini M, Rocca M, Giardino R. Effectiveness of a bioabsorbable conduit in the repair of peripheral nerves. Biomaterials 1996;17(10):959-62. 122. Archibald SJ, Krarup C, Shefner J, Li ST, Madison RD. A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol 1991;306(4):685-96. 123. Archibald SJ, Shefner J, Krarup C, Madison RD. Monkey median nerve repaired by nerve graft or collagen nerve guide tube. J Neurosci 1995;15(5 Pt 2):4109-23. 124. Robinson PH, van der Lei B, Hoppen HJ, Leenslag JW, Pennings AJ, Nieuwenhuis P. Nerve regeneration through a two-ply biodegradable nerve guide in the rat and the influence of ACTH4-9 nerve growth factor. Microsurgery 1991;12(6):412-9. 125. Tountas CP, Bergman RA, Lewis TW, Stone HE, Pyrek JD, Mendenhall HV. A comparison of peripheral nerve repair using an absorbable tubulization device and conventional suture in primates. J Appl Biomater 1993;4(3):261-8. 126. Dahlin L, Lundborg G. The use of silicone tubing in the late repair of the median and ulnar nerves in the forearm. J Hand Surg [Br] 2001;26(4):393-4. 127. Midgley RD, Woolhouse FM. Silicone rubber sheathing as an adjunct to neural anastomosis. Surg Clin North Am 1968;48(5):1149-54. 128. Merle M, Dellon AL, Campbell JN, Chang PS. Complications from silicon-polymer intubulation of nerves. Microsurgery 1989;10(2):130-3. 129. Molander H, Olsson Y, Engkvist O, Bowald S, Eriksson I. Regeneration of peripheral nerve through a polyglactin tube. Muscle Nerve 1982;5(1):54-7. 130. Nyilas E, Chiu TH, Sidman RL, Henry EW, Brushart TM, Dikkes P, Madison R. Peripheral nerve repair with bioresorbable prosthesis. Trans Am Soc Artif Intern Organs 1983;29:307-13. 131. Evans GR, Brandt K, Niederbichler AD, Chauvin P, Herrman S, Bogle M, Otta L, Wang B, Patrick CW, Jr. Clinical long-term in vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. J Biomater Sci Polym Ed 2000;11(8):869-78. 132. Evans GR, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG and others. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials 2002;23(3):841-8. 133. Evans GR, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, Mikos AG, Hodges J, Williams J, Gurlek A and others. In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 1999;20(12):1109-15. 134. Agrawal CM, Athanasiou KA. Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res 1997;38(2):105-14. 135. Den Dunnen WF, Meek MF, Robinson PH, Schakernraad JM. Peripheral nerve regeneration through P(DLLA-epsilon-CL) nerve guides. J Mater Sci Mater Med 1998;9(12):811-4. 136. den Dunnen WF, van der Lei B, Schakenraad JM, Stokroos I, Blaauw E, Bartels H, Pennings AJ, Robinson PH. Poly(DL-lactide-epsilon-caprolactone) nerve guides perform better than autologous nerve grafts. Microsurgery 1996;17(7):348-57. 137. Meek MF, Den Dunnen WF, Schakenraad JM, Robinson PH. Long-term evaluation of functional nerve recovery after reconstruction with a thin-walled biodegradable poly (DL-lactide-epsilon-caprolactone) nerve guide, using walking track analysis and electrostimulation tests. Microsurgery 1999;19(5):247-53. 138. Valero-Cabre A, Tsironis K, Skouras E, Perego G, Navarro X, Neiss WF. Superior muscle reinnervation after autologous nerve graft or poly-L-lactide-epsilon-caprolactone (PLC) tube implantation in comparison to silicone tube repair. J Neurosci Res 2001;63(2):214-23. 139. Borkenhagen M, Stoll RC, Neuenschwander P, Suter UW, Aebischer P. In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel. Biomaterials 1998;19(23):2155-65. 140. Soldani G, Varelli G, Minnocci A, Dario P. Manufacturing and microscopical characterisation of polyurethane nerve guidance channel featuring a highly smooth internal surface. Biomaterials 1998;19(21):1919-24. 141. Lesny P, De Croos J, Pradny M, Vacik J, Michalek J, Woerly S, Sykova E. Polymer hydrogels usable for nervous tissue repair. J Chem Neuroanat 2002;23(4):243-7. 142. Dalton PD, Flynn L, Shoichet MS. Manufacture of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels. Biomaterials 2002;23(18):3843-51. 143. Flynn L, Dalton PD, Shoichet MS. Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials 2003;24(23):4265-72. 144. Yoshii S, Oka M, Shima M, Taniguchi A, Akagi M. 30 mm regeneration of rat sciatic nerve along collagen filaments. Brain Res 2002;949(1-2):202-8. 145. Ceballos D, Navarro X, Dubey N, Wendelschafer-Crabb G, Kennedy WR, Tranquillo RT. Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Exp Neurol 1999;158(2):290-300. 146. Dubey N, Letourneau PC, Tranquillo RT. Guided neurite elongation and schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration. Exp Neurol 1999;158(2):338-50. 147. Colin W, Donoff RB. Nerve regeneration through collagen tubes. J Dent Res 1984;63(7):987-93. 148. Itoh S, Takakuda K, Kawabata S, Aso Y, Kasai K, Itoh H, Shinomiya K. Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair. Biomaterials 2002;23(23):4475-81. 149. Braun RM. Experimental Peripheral Nerve Repair Tubulation. Surg Forum 1964;15:452-4. 150. Mligiliche NL, Tabata Y, Ide C. Nerve regeneration through biodegradable gelatin conduits in mice. East Afr Med J 1999;76(7):400-6. 151. Big A, Cojazzi G, Panzavolta S, Rubini K, Roveri N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 2001;22(8):763-8. 152. Mohiuddin L, Delcroix JD, Fernyhough P, Tomlinson DR. Focally administered nerve growth factor suppresses molecular regenerative responses of axotomized peripheral afferents in rats. Neuroscience 1999;91(1):265-71. 153. Newman JP, Verity AN, Hawatmeh S, Fee WE, Jr., Terris DJ. Ciliary neurotrophic factors enhances peripheral nerve regeneration. Arch Otolaryngol Head Neck Surg 1996;122(4):399-403. 154. Nachemson AK, Lundborg G, Hansson HA. Insulin-like growth factor I promotes nerve regeneration: an experimental study on rat sciatic nerve. Growth Factors 1990;3(4):309-14. 155. Santos X, Rodrigo J, Hontanilla B, Bilbao G. Local administration of neurotrophic growth factor in subcutaneous silicon chambers enhances the regeneration of the sensory component of the rat sciatic nerve. Microsurgery 1999;19(6):275-80. 156. Santos X, Rodrigo J, Hontanilla B, Bilbao G. Regeneration of the motor component of the rat sciatic nerve with local administration of neurotrophic growth factor in silicone chambers. J Reconstr Microsurg 1999;15(3):207-13. 157. Hanthamrongwit M, Reid WH, Grant MH. Chondroitin-6-sulphate incorporated into collagen gels for the growth of human keratinocytes: the effect of cross-linking agents and diamines. Biomaterials 1996;17(8):775-80. 158. Laemmel E, Penhoat J, Warocquier-Clerout R, Sigot-Luizard MF. Heparin immobilized on proteins usable for arterial prosthesis coating: growth inhibition of smooth-muscle cells. J Biomed Mater Res 1998;39(3):446-52. 159. Pieper JS, Oosterhof A, Dijkstra PJ, Veerkamp JH, van Kuppevelt TH. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate. Biomaterials 1999;20(9):847-58. 160. Lin FH, Dong GC, Chen KS, Jiang GJ, Huang CW, Sun JS. Immobilization of Chinese herbal medicine onto the surface-modified calcium hydrogenphosphate. Biomaterials 2003;24(13):2413-22. 161. Hermanson GT. Bioconjugate techniques. San Diego: Academic Press; 1996. xxv, 785 p. p. 162. Dellon AL, Mackinnon SE. Selection of the appropriate parameter to measure neural regeneration. Ann Plast Surg 1989;23(3):197-202. 163. Kanaya F, Firrell JC, Breidenbach WC. Sciatic function index, nerve conduction tests, muscle contraction, and axon morphometry as indicators of regeneration. Plast Reconstr Surg 1996;98(7):1264-71, discussion 1272-4. 164. Zettler C, Bridges DC, Zhou XF, Rush RA. Detection of increased tissue concentrations of nerve growth factor with an improved extraction procedure. J Neurosci Res 1996;46(5):581-94. 165. Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S, Mamada H, Tanaka K, Parada LF, Wada K. Microglia-Muller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 2002;22(21):9228-36. 166. Hall FL, Fernyhough P, Ishii DN, Vulliet PR. Suppression of nerve growth factor-directed neurite outgrowth in PC12 cells by sphingosine, an inhibitor of protein kinase C. J Biol Chem 1988;263(9):4460-6. 167. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65(1-2):55-63. 168. Lundborg G, Rosen B, Abrahamson SO, Dahlin L, Danielsen N. Tubular repair of the median nerve in the human forearm. Preliminary findings. J Hand Surg [Br] 1994;19(3):273-6. 169. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 1989;83(1):129-38. 170. Kanje M, Lundborg G, Edstrom A. A new method for studies of the effects of locally applied drugs on peripheral nerve regeneration in vivo. Brain Res 1988;439(1-2):116-21. 171. Hare GM, Evans PJ, Mackinnon SE, Best TJ, Bain JR, Szalai JP, Hunter DA. Walking track analysis: a long-term assessment of peripheral nerve recovery. Plast Reconstr Surg 1992;89(2):251-8. 172. Park K. Controlled drug delivery : challenges and strategies. Washington, DC: American Chemical Society; 1997. xvii, 629 p. p. 173. Varon S, Nomura J, Shooter EM. The isolation of the mouse nerve growth factor protein in a high molecular weight form. Biochemistry 1967;6(7):2202-9. 174. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34476 | - |
| dc.description.abstract | In this study, we focused on the development of artificial nerve guides that could offer sustained release of neurotrophic factors during the prolonged period of nerve regeneration. We used carbodiimide as a zero-length cross-linker to conjugate neurotrophic factors with gelatin-tricalcium phosphate composites (GTG). The bioactivity of neurotrophic factors after conjugation reaction, the release characteristics of neurotrophic factors grafted on GTG composites, and the in vitro biocompatibility of modified GTG composites were explored. With the immobilization of nerve growth factors (NGF) on GTG membranes, the releasing curve for NGF showing two distinctive parts with different slopes indicated that NGF was released from the composite in both diffusion-controlled mechanism and degradation-controlled mechanism. With the ELISA tests for β-NGF subunit, the biological activity of NGF molecules after the conjugation reaction could be confirmed. In addition, cultured PC12 cells also showed significant neurite outgrowth with NGF-grafted GTG membranes, which was statistically higher than GTG without NGF immobilization. Therefore, the technique used in the study is capable of immobilizing NGF on GTG membranes and retaining the bioactivity of NGF. Using the carbodiimide conjugation reaction, NGF, BDNF, and IGF-1 were then immobilized onto GTG membranes. Before the applications in animal studies, the in vitro biocompatibility of GTG membranes grafted with various neurotrophic factors was investigated. In PC12 cell culture, the total protein content and MTT assay indicated more cell attachment on the composites modified with growth factors. IGF-1 showed a higher survival promotion effect on PC12 cells than BDNF and NGF groups. On the other hand, NGF released from the composite showed the highest level of neurite outgrowth for PC12 cells. Cytotoxic effect was not induced by the conjugation reactions for the immobilization of neurotrophic factors.
In animal studies, we first evaluated the in vivo applications of GTG conduits for peripheral nerve repair. Six months after sciatic nerve repair with GTG conduits, the biocompatibility and effects on nerve regeneration of GTG conduits were evaluated. The GTG conduits that we implanted were well tolerated by the host tissue, elicited a mild foreign body reaction, and had an optimal degradation over 24 weeks. No inflammation, infection, nor allergic reaction was noticed. Sections taken at the midconduits demonstrated typical regenerated nerve cables. Electrophysiological examinations and walking tract analysis also showed better recovery of functions for nerves repaired with GTG conduits when compared with nerves repaired with silicone tubes. When nerve repair was conducted with GTG conduits modified with various neurotrophic factors, the conduits were also well tolerated by the host tissue. In the regenerated nerves, the number of regenerated axons per unit area, the average axon size, the density of nerve fiber were even more improved by incorporating neurotrophic factors with GTG conduits. In the assessment of compound muscle action potential, reinnervation of gastrocnemic muscles, and sciatic function index, conduits modified with various neurotrophic factors showed a more favourable outcome in compound muscle action potential. Conduits with BDNF had a better recovery of gastrocnemic muscle weight. Therefore, GTG nerve guidance conduit incorporated with neurotrophic factors can be a potential candidate for peripheral nerve repair. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:10:32Z (GMT). No. of bitstreams: 1 ntu-95-D91548007-1.pdf: 33652921 bytes, checksum: 2865d923e5dbd584f3f2403df7a404c8 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | CONTENTS
CHAPTER 1 INTRODUCTION 1-1 Peripheral nerve injury ………………………………………………..............1 1-2 Strategies for peripheral nerve repair …………………………………............3 1-3 Development of artificial nerve grafts …………………….………………….5 1-3.1 Materials for nerve guidance channels …………….………………….6 1-3.2 Biomolecular signals ……………………………………………….…8 1-3.3 Cellular components …………………………………………………10 1-4 Objectives of this study ………………………………………………...……11 CHAPTER 2 THEORETICAL BASIS 2-1 The peripheral nervous system: structure and function ……………………..13 2-2 Peripheral nerve injury and regeneration ……………………………………17 2-3 Neurotrophic factors and peripheral nerve regeneration …………………….21 2-4 Selection of biomaterials for nerve guidance channels ……………………...24 2-5 Incorporation of neurotrophic factors onto nerve guidance channels ……….27 2-6 In vitro and in vivo evaluations for biomaterials releasing neurotrophic factors ……………………………………………………………………......31 2-6.1 In vitro evaluations …………………………………………………..31 2-6.2 In vivo evaluations …………………………………………………...32 CHAPTER 3 MATERIALS AND METHODS 3-1 Preparation of GTG membranes immobilized with neurotrophic factors …...35 3-1.1 Preparation of GTG membranes …………………...………………..35 3-1.2 Covalent immobilization of neurotrophic factors onto GTG membranes ………………………………………………………………......36 3-2 Evaluating the release characteristics and bioactivity of neurotrophic factors immobilized on GTG membranes using a nerve growth factor model …...…37 3-2.1 The amount of nerve growth factor immobilized on GTG membranes ......................................................................................................38 3-2.2 NGF releasing study………………………………………………….39 3-2.3 Evaluating the bioactivity of released NGF …………………………40 3-3 Evaluating the in vitro biocompatibility of GTG membranes grafted with neurotrophic factors ……………..…………………………………………..42 3-3.1 NGF, BDNF, and IGF-1 covalently immobilized onto GTG membranes …………………………………………………………………..42 3-3.2 Biocompatibility tests: cell viability, cell population and LDH leakage assays ………………………………………………………………………...42 3-3.2.1 MTT assay …………………………………………………...43 3-3.2.2 Total protein test …………………………………………….44 3-3.2.3 LDH leakage ………………………………………………...45 3-3.3 Bioactivity of the released neurotrophic factors: neurite outgrowth assay …………………………………………………………………………46 3-4 In vivo evaluations for biocompatibility and feasibility of GTG conduits in peripheral nerve repair ………………………………………………………47 3-4.1 Preparation of GTG conduits ………………………………………..48 3-4.2 Conduits implantation for sciatic nerve repair ………………………50 3-4.3 Electrophysiological study …………………………………………..52 3-4.4 Sciatic function index ………………………………………………..52 3-4.5 Histomorphometric assessment ……………………………………...55 3-5 Animal studies of GTG immobilized with various neurotrophic factors ……56 3-5.1 Preparation and implantation of GTG conduits grafted with NGF, BDNF, or IGF-1 for sciatic nerve repair …………………………………….58 3-5.2 Electrophysiological study …………………………………………..59 3-5.3 Functional and histomorphological assessment ……………………..59 3-5.3.1 Sciatic function index ...……………………………………...59 3-5.3.2 Pinch reflex test ……………………………………………..60 3-5.3.3 Weight ratios of gastrocnemic muscles …………………...…60 3-5.3.4 Histomorphological assessment ……………………………..61 CHAPTER 4 RESULTS AND DISCUSSION 4-1 The release characteristics and bioactivity of neurotrophic factors immobilized on GTG membranes …………………………………………………………62 4-1.1 The amount of NGF immobilized on GTG membranes …………….62 4-1.2 The amount and duration of NGF released from GTG membranes …………………………………………………………………..64 4-1.3 Bioactivity of NGF released from GTG membranes ………………..66 4-1.4 Discussion of NGF grafting and releasing study ……………………68 4-2 Biocompatibility of GTG grafted with various neurotrophic factors: in vitro study …………………………………………………………………………72 4-2.1 MTT assay …………………………………………………………...72 4-2.2 Total protein analysis ………………………………………………..73 4-2.3 LDH leakage analysis ……………………………………………….75 4-2.4 Measurement of neurite outgrowth of PC12 cells …………………...76 4-2.5 Discussion of biocompatibility tests of GTG membranes grafted with various neurotrophic factors …………………………………………………78 4-3 In vivo biocompatibility and feasibility of GTG conduits for peripheral nerve repair ………………………………………………………………………...80 4-3.1 Electrophysiological study …………………………………………..80 4-3.2 Sciatic function index ………………………………………………..82 4-3.3 Gross findings and histomorphometric assessment …………………85 4-3.4 Discussion of GTG conduits in peripheral nerve repair: in vivo biocompatibility and feasibility ……………………………………………...91 4-4 Animal study of GTG conduits grafted with various neurotrophic factors for peripheral nerve repair ………………………………………………………96 4-4.1 Electrophysiological study …………………………………………..96 4-4.2 Sciatic function index ………………………………………………..98 4-4.3 Nerve pinch reflex …………………………………………………...99 4-4.4 Weight ratios of gastrocnemic muscles ……………………………...99 4-4.5 Histomorphological evaluations ……………………………………100 4-4.6 Discussion of in vivo evaluations of GTG conduits grafted with various neurotrophic factors ……….……………………...………………………..112 CHAPTER 5 CONCLUSION AND FUTURE REFERENCE ……………………………………………………………………..118 FIGURE INDEX CHAPTER 1 Fig. 1.1. An illustration of nerve repair with a biological or artificial nerve graft ……4 Fig. 1.2. Considerations for the development of an artificial nerve guidance channel ………………………………………………………………………………..5 CHAPTER 2 Fig. 2.1. Unmyelinated axons ………...…………………………….……………….14 Fig. 2.2. A myelinated axon ...……………………………………….………………14 Fig. 2.3. Structure of a nerve ………………………………………….……………..15 Fig. 2.4. Node of Ranvier ……….…………………………………………………...16 Fig. 2.5. Nerve injury, degeneration, and regeneration ……………………………...20 Fig. 2.6. A gelatin tube bends and collapses during the repair of the sciatic nerve………………………………………………………………………………….26 Fig. 2.7. Steps of cross-linking with carbodiimide for covalent binding between the carboxyl groups of gelatin and the amine groups of neurotrophic factors …………..30 CHAPTER 3 Fig. 3.1. Flowchart of experiments ………………………………………………….34 Fig. 3.2. Preparation of GTG and immobilization of neurotrophic factors …………36 Fig. 3.3. Evaluating the release characteristics and bioactivity of GTG grafted with NGF ………………………………………………………………………………....37 Fig. 3.4. Sandwich ELISA method for NGF quantification ………………………...39 Fig. 3.5. MTT reaction…………………………………………………...…………..43 Fig. 3.6. Reaction for total protein test ……………………………………………...45 Fig. 3.7. Reaction for LDH leakage test …………………………………………….46 Fig. 3.8. In vivo tests for biocompatibility and feasibility of GTG membranes in peripheral nerve repair ………………………………………………………………48 Fig. 3.9. GTG conduits for sciatic nerve repair ……………………………………...49 Fig. 3.10. Repair of transected sciatic nerve with a GTG conduit …………………..51 Fig. 3.11. Intra-operative photograph of the sciatic nerve reconstructed with a GTG conduit ……………………………………………………………………………….51 Fig. 3.12. Sciatic function index was evaluated by walking tract analysis…...….…..54 Fig. 3.13. Parameters from footprints for sciatic function index …………...……….54 Fig. 3.14. Animal studies for GTG immobilized with various neurotrophic factors ………………………………………………………………………………………..57 CHAPTER 4 Fig. 4.1. The amount of NGF immoblized on GTG ………………………………...63 Fig. 4.2. The NGF releasing curve ………………………………………………….65 Fig. 4.3. Daily release of NGF from GEN membrane (ng/day) …………………….65 Fig. 4.4. Neurite-bearing cells in different groups …………………………………..67 Fig. 4.5. Neurite outgrowth assay …………………………………………………...67 Fig. 4.6. The MTT-tetrazolium assay ……………………………………………….73 Fig. 4.7. Total protein content (mg/ml) ……………………………………………..74 Fig. 4.8. LDH leakage test (U/dl) …………………………………………………...76 Fig. 4.9. Neurite-bearing cells in different groups …………………………………..77 Fig. 4.10. Neurite outgrowth assay ………………………………………………….77 Fig. 4.11. Compound muscle action potential: unoperated side …………...………..80 Fig. 4.12. Compound muscle action potential: 24 weeks after silicone tube repair ………………………………………………………………………………………..81 Fig. 4.13. Compound muscle action potential: 24 weeks after GTG tube repair ………………………………………………………………………………………..81 Fig. 4.14. Recovery index of CMAP amplitude 24 weeks after conduit bridging repair ………………………………………..………………………………………………82 Fig. 4.15. Graph showing change in the SFI as a funtion of time ………..……………………………………………………………………………....83 Fig. 4.16. Walking tract analysis with footprints in GTG group at 6 and 24 weeks after nerve repair ………………………………………………….…………………84 Fig. 4.17. Intraoperative view of silicone conduit …………………………………...86 Fig. 4.18. Intraoperative view of the GTG conduit during harvesting …………...….86 Fig. 4.19. A GTG conduit harvested 24 weeks after implantation …………………..87 Fig. 4.20. Regenerated nerve with small diameter in the silicone conduit ...………..87 Fig. 4.21. Regeneration of nerve and degradation of conduit in GTG group (low power field) …….……………………………………………………………………88 Fig. 4.22. Nerve regenerated in the GTG conduit (high power field) ……………….89 Fig. 4.23. Total nerve area at the mid portion of the conduits …………...………….90 Fig. 4.24. Compound muscle action potential: NGF group 16 weeks after repair ………………………………………………………………………………...96 Fig. 4.25. Compound muscle action potential: BDNF group 16 weeks after repair ………………..…………………………………………...………………………….97 Fig. 4.26. Compound muscle action potential: IGF-1 group 16 weeks after repair …………………..……………………………………………………………………97 Fig. 4.27. Recovery index of CMAP amplitude 16 weeks after conduit bridging repair …...……………………………………………………………………………98 Fig. 4.28. Sciatic function index (SFI) …………….………………………………...99 Fig. 4.29. Weight ratios of the gastrocnemic muscle …………….………………...100 Fig. 4.30. Gross findings during the harvest of GTG conduits modified with neurotrophic factors ………………………………….…………………………….102 Fig. 4.31. Macrographs of the GTG grafted with neurotrophic factors and 16 weeks after implantation …………………………………………………………………..103 Fig. 4.32. Micrograph of GTG conduits grafted with neurotrophic factors 16 weeks after implantation ………………………………..…………………………………104 Fig. 4.33. Light micrograph of regenerated nerve cross-section in the blank GTG conduit ……………………………………………………………………………...105 Fig. 4.34. Light micrograph of regenerated nerve cross-section in the GTG conduit immobilized with NGF ……………………………………..……………………...106 Fig. 4.35. Light micrograph of regenerated nerve cross-section in the GTG conduit immobilized with BDNF ……………………………………………………..…….107 Fig. 4.36. Light micrograph of regenerated nerve cross-section in the GTG conduit immobilized with IGF-1 ……………………………………………………………108 Fig. 4.37. Number of axons per unit area calculated from sections at the midconduits at 16 weeks ………………………………………………………………………....109 Fig. 4.38. Nerve fiber density calculated from sections at the midconduits (sum of axon area/image area) at 16 weeks …………………………………………..……..110 Fig. 4.39. Average axon area (μm2) calculated from sections at the midconduits at 16 weeks …………………………………………………………………...…………..111 TABLE INDEX CHAPTER 2 Table 2.1. Seddon and Sunderland peripheral nerve injury grading system …….….18 CHAPTER 4 Table 4.1. Results of MTT assay ……………...…………………………………….72 Table 4.2. Results of total protein analysis …………...…………………………..…74 Table 4.3. Results of LDH leakage analysis ………………………...……………....75 | |
| dc.language.iso | en | |
| dc.subject | 體外 | zh_TW |
| dc.subject | 神經導管 | zh_TW |
| dc.subject | 持續釋放 | zh_TW |
| dc.subject | 體內 | zh_TW |
| dc.subject | 生物相容性 | zh_TW |
| dc.subject | 生物可分解性 | zh_TW |
| dc.subject | 神經滋養因子 | zh_TW |
| dc.subject | 神經再生 | zh_TW |
| dc.subject | nerve regeneration | en |
| dc.subject | nerve guidance channels | en |
| dc.subject | neurotrophic factors | en |
| dc.subject | biodegradable | en |
| dc.subject | sustained release | en |
| dc.subject | in vitro | en |
| dc.subject | in vivo | en |
| dc.subject | biocompatibility | en |
| dc.title | 可持續釋放神經滋養因子之生物可分解性神經導管於周邊神經再生之研發與應用 | zh_TW |
| dc.title | Development and Applications of Biodegradable Nerve Guidance Channels with Sustained Release of Neurotrophic Factors in Peripheral Nerve Regeneration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林瑞明,邱英明,孫瑞昇,姚俊旭,陳悅生,史杜賓斯基(Leszek Stobinski) | |
| dc.subject.keyword | 神經導管,神經滋養因子,生物可分解性,持續釋放,體外,體內,生物相容性,神經再生, | zh_TW |
| dc.subject.keyword | nerve guidance channels,neurotrophic factors,biodegradable,sustained release,in vitro,in vivo,biocompatibility,nerve regeneration, | en |
| dc.relation.page | 138 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-04-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 32.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
